Our Project

Acoustic and lexical effects on speech perception in Kaqchikel (Mayan) LSA 2017

Ryan Bennett¹, Kevin Tang¹, Juan Ajsivinac²

kevin.tang@yale.edu & ryan.bennett@yale.edu

¹Yale University

²Independent scholar

Jan 5th-8th, 2017

Our project: the production-perception-lexicon interface in Kaqchikel (Mayan).

Methodological challenge: to model the production and perception of an under-resourced and under-studied language with small and noisy data collected in the field.

Outline

Goals of the talk:

- ► Report on:
 - Construction of spoken and written corpora.
 - An AX discrimination study on the perception of stop consonants.
- Examine:
 - ► The effect of acoustic and lexical factors on speech perception.
 - The time course of such effects.

Outline

General findings:

- Both acoustic and lexical factors affect speech perception in Kaqchikel.
 - Indirect validation of small corpora for speech perception research.
- Both acoustic and lexical factors kick in early, and decay over time.
- Rich, experience-based factors influence perception even in low-level tasks which do not require lexical access.

Kaqchikel

Kaqchikel is a K'ichean-branch Mayan language spoken in the central highlands of Guatemala (over 500,000 speakers, Richards 2003, Fischer & R. M. Brown 1996: fn.3).

	Bilabial		Dental/ alveolar		Post- alveolar		Velar		Uvular		Glottal
Stop	р	6	\mathbf{t}	\mathbf{t}^{2}			k	\mathbf{k}^{2}	q	Ĝ	?
Affricate			$\widehat{\mathrm{ts}}$	$\widehat{\mathrm{ts}}^{\mathrm{?}}$	t∫	$\widehat{t}\widehat{f}^{2}$					
Fricative			S		ſ		$x \sim \chi$				
Nasal	ı	n	n								
Semivowel		W				j					
Liquid			1	r							

(Campbell 1977, Chacach Cutzal 1990, Cojtí Macario & Lopez 1990, García Matzar et al. 1999, Majzul et al. 2000, R. M. Brown et al. 2010, Bennett 2016, etc.)

Perception study: procedure

Kaqchikel speakers heard pairs of $\left[\mathrm{CV}\right]$ (onset) or $\left[\mathrm{VC}\right]$ (coda) syllables.

- Vowels were always identical, but consonants could be different.
- Items embedded in speech-shaped noise generated from spoken Corpus (OdB SNR, after amplitude normalization; LTAS over 4 hours of corpus).

Participants asked to respond $\ensuremath{\operatorname{SAME}}$ or $\ensuremath{\operatorname{DIFFERENT}}$ on a button box.

► Assumption: incorrect SAME responses indicate perceptual similarity between [C₁]~[C₂] pairs.

Perception study: stimuli

Item properties:

- ▶ $V \in /a i u/$
- $\blacktriangleright\ C\in$ all consonants of Kaqchikel
 - ▶ Target pairs: $C \in /p \ 6 \ t \ t^2 \ k \ k^2 \ q \ q^2$ (?)/ (no affricates)
 - Filler pairs: any other consonant combination
- Syllables recorded by native speaker of Patzicía Kaqchikel (Ajsivinac).

Each participant heard 200 total trials (6000 pairs, in 30 randomized lists).

Perception study: presentation

Perception study

Timing details:

- ISI = 800ms (250ms of noise padding before/after each syllable + 300ms silence between items)
- Inter-trial interval = 1500ms
- Up to 10 seconds to respond without receiving a warning.
 - Most responses under 1 sec. (mean RT = 854ms, median RT = 664ms)

Moderate ISI and response times may have favored a linguistic mode of speech processing.

(Pisoni 1973, 1975, Pisoni & Tash 1974, Fox 1984, Werker & Logan 1985, Kingston 2005, Babel & Johnson 2010, McGuire 2010, Kingston et al. 2016 and references there)

45 participants (44 completed the study).

- ► All speakers of Patzicía Kaqchikel.
- Good mix of ages and genders.
 - 13 male, 31 female
 - Ages 18-50 (mean = 26, median = 25, SD = 6.2)

General findings

Relatively good discrimination: ${\rm d}'_{\mu}\approx 1.75$

General findings

Dorsals confusable with each other, apart from $/k^{2}/$ $_{\mbox{\tiny (see also Shosted 2009)}}$

- \blacktriangleright Onset [TV] d': $/k \; q \; q^2 / {\sim} /k \; q \; q^2 / \; 1.23 <$ all others 1.65
- $\blacktriangleright~$ Coda [VT] d': $/k \; q \; q^2 / {\sim} / k \; q \; q^2 / \; 1.50 <$ all others 1.85

/6/ frequently confused with $/p\ {\rm g}\ ?/.$

- $\blacktriangleright~$ Onset [TV] d': $/6/{\sim}/p~q^2~?/~$ 0.77 $</6/{\sim}$ all others 1.61; highest d' rank = 32/36
- **•** Coda [VT] d': $/6/\sim/p q^2 ?/$ 1.16 $</6/\sim$ all others 1.88; highest d' rank = 31/36

Corpus criticism

Corpus construction

► Spontaneous speech is *naturalistic*, but...

... leads to data sparsity (cf. Xu 2010)

- $\blacktriangleright~/t^{2}/$ is rare (18, <1% of stops; England 2001, Bennett 2016)
- \blacktriangleright Large skew toward prevocalic $[\mathrm{CV}]$ stops $_{(>85\%)}$
- ► Narratives, not dialogues (cf. CALLHOME, Switchboard)

To test for an effect of lexical measures on speech perception, we compiled a text corpus of Kaqchikel:

- Corpus size: 1 million word tokens.
 - Constructed from existing religious texts, spoken transcripts, government documents, and educational books.
- ► Compare:
 - Kučera & Francis (1967): 1.014 million words of English
 - ▶ van Heuven et al. (2014): 201 million words of English

Corpus criticism

- Not huge poor estimates of low frequency words (Brysbaert & New 2009)
- ▶ Not terrifically speech-like too religious and governmental.
- ▶ Noisy OCR errors, typos, new-line hyphens...
 - Applied various filters to clean up the corpus (see Appendix).

Acoustic similarity

Expectation: greater acoustic similarity predicts greater perceptual similarity.

Two kinds of acoustic similarity:

- ► STIMULUS SIMILARITY
- CATEGORY SIMILARITY: similarity of two phoneme categories based on *prior phonetic experience*.
 - Specifically: category overlap

Acoustic similarity

We used DYNAMIC TIME WARPING to estimate acoustic similarity (Sakoe & Chiba 1971, Mielke 2012)

- Stimulus similarity: over stimulus pairs.
- Category similarity:
 - \blacktriangleright Over all possible $[\mathrm{CV}]$ and $[\mathrm{VC}]$ pairings in the acoustic corpus
 - Pairs matched for stress and vowel quality.

DTW gives us a similarity metric for each pair of stimuli/sounds.

Lexical factors

Well-known that lexical factors interact with speech perception:

- Wordhood (e.g. Ganong 1980)
- Word frequency (e.g. C. R. Brown & Rubenstein 1961, Broadbent 1967, Vitevitch 2002, Felty et al. 2013, Tang & Nevins 2014, Tang 2015: Ch.4)
- Bigram frequency (e.g. Rice & Robinson 1975, Carreiras et al. 1993, Barber et al.
 2004, Albright 2009, González-Alvarez & Palomar-García 2016)
- Segmental frequency (e.g. Kataoka & Johnson 2007, Tang 2015: Ch.4, Bundgaard-Nielsen et al. 2015)
- Neighborhood density (e.g. Luce 1986, Yarkoni et al. 2008, Bailey & Hahn 2001, Gahl & Strand 2016)
- Functional load/Presence of minimal pairs (e.g. Martinet 1952; Baese-Berk & Goldrick 2009, Graff 2012, Goldrick et al. 2013, Hall & Hume submitted)
- ► Etc.

Results

Analyzed participant accuracy with a mixed-effects logistic regression in $\rm R$ (R Development Core Team 2013, Bates et al. 2011)

Parameters:

- ► Fixed effects:
 - All acoustic and lexical factors mentioned above (no interactions).
 - Response time (z-scored by participant)
- Random effects:
 - Participant
 - By-participant slopes for lexical factors
 - Nuisance factors (item, list, stimulus order, onset/coda)

Full model reduced by step-down model selection.

Explanatory factors

	β	$SE(\beta)$	t	<i>p</i> -value
(Intercept)	0.8042	0.1621	4.963	6.95e-07***
Acoustic stimulus similarity Acoustic category similarity	-1.0720 -0.3876	0.1151 0.1238	9.316 3.131	2e-16*** 0.00174**
Functional load Distributional overlap	0.4653 -0.6320	0.1649 0.1607	2.822 3.933	0.00477** 8.38e-05***
Word token frequency diff.	0.1848	0.1068	1.731	0.08353 [.]

Stimulus similarity and category similarity

Both stimulus similarity and category similarity had an effect on discriminability in the perception study.

Possible interpretation:

- Discrimination is mediated by some representation of prior phonetic experience.
- These representations include rich acoustic detail for individual phoneme categories.
- Consistent with exemplar-type theories of lexical representation (e.g. Pierrehumbert 2001, 2016, Johnson 2005, Gahl & Yu 2006 and references there)

Lexical Factors – Contrastiveness

Both functional load and distributional overlap play a role in discrimination.

A possible interpretation:

- Discrimination is mediated by how contrastive two phonemes are
 - Importance for minimal contrasts.
 - Relative predictability.
- ▶ The perceptual space is warped by contrastiveness.
 - Consistent with Hall's (2012) Probabilistic Phonological Relationship Model.

Time course

Time course effects

Responses binned according to by-participant RT terciles.

	Early	Middle	Late
	(\mupprox 400ms)	(\mupprox 650ms)	($\mu pprox$ 1200ms)
Acoustic stimulus similarity Acoustic category similarity	-1.4515*** -0.6544**	-1.1651*** -0.3020 [.]	-0.74647*** -0.28756*
Functional load Distributional overlap	0.9001** -1.1437***	0.4116 [.] -0.8765***	0.28513 [.] -0.27972 [.]
Word token frequency diff.	0.2671 ^{<i>n.s.</i>}	0.2314 ^{<i>n.s.</i>}	0.06068 ^{<i>n.s.</i>}

Assumption: segment-level phonetic processing occurs prior to lexical activation in speech processing.

(e.g. Fox 1984, Norris et al. 2000, Kingston 2005, Babel & Johnson 2010, Kingston et al. 2016, etc.)

Predictions about the time-course of effects:

- Acoustic factors > Lexical factors
- Segment-level > Word-level

Time course effects

Predictions about the time-course of effects:

- Acoustic factors > Lexical factors
- Segment-level > Word-level

Not borne out!

- ► Acoustic measures active early, and weaken over time.
- Same pattern for lexical measures (functional load, distributional overlap).
- Includes an experience-based measure of acoustic similarity (acoustic category distance)

Conclusions

Our results suggest:

- Speech perception is mediated by phonetically rich memory traces associated with phonemic categories (exemplar theory).
- Lexical effects related to a graded notion of contrastiveness may affect speech perception.
- Lexical factors may have kicked earlier than predicted by 'modular' models of speech processing.
 - Did not find evidence that acoustic/phonetic processing precedes lexical activation.
 - Suggests co-activation of low-level and high-level factors. (McClelland & Elman 1986, McClelland et al. 1986, 2006)
 - Such activation appears to decay fairly quickly. (See too Kingston et al. 2016)

Conclusions

Three caveats:

- Classic findings of late time course for lexical effects involve LEXICAL ACCESS (e.g. Ganong effect, Ganong 1980, Fox 1984, etc.)
 - Not clear that our 'lexical' measures—functional load, distributional overlap—involve lexical access in the same sense.
- Our ISIs may have been too long to 'catch' a purely pre-lexical stage of processing, even for fast response times (ISI = 800ms)
- Gradual decay (rather than increase) in strength of lexical effects over time may be more consistent with autonomous, feed-forward models (e.g. MERGE) than richly interactive models (e.g. TRACE) (TRACE, McClelland & Elman 1986, McClelland et al. 2006; MERGE, Norris et al. 2000; see again Kingston et al. 2016).

Conclusions

Small, noisy corpora can make valuable contributions to speech perception research — provided they are carefully processed.

Slide download

References available on request.

Slides available for download at

http://tang-kevin.github.io/Files/Slides/Bennett_Tang_LSA2017.pdf