

Introduction

Turkish Partial Reduplication

- The partial reduplication (or emphatic reduplication) in Turkish is found with modifiers, namely adverbs and adjectives.
 - Emphatic variants are derived by prefixing a CVC syllable
 - The initial CV are identical to the word-initial CV of the base - The reduplicant C ends in one of the four consonants:
 - -p, -m, -s, -r (Lewis 1967), call it *linking consonants (LC)*.

Base (1)kara beyaz ma:vi temiz

'black' 'white' 'blue' 'clean'

Gloss

Reduplication ka p-kara bem-beyaz ma**s**-ma:vi te**r**-temiz

Gloss 'very black' 'very white' 'fully blue' 'completely clean'

• This study re-examines the LOCALITY and FEATURE SPECIFICITY of the OCP effects.

Background

Previous Analyses

- A number of studies have examined this phenomenon:
 - Hatiboğlu (1973), Demircan (1987), Dobrovolsky (1987), Taneri (1990), Wedel (1999), Yu (1999), Kelepir (2000), Sofu (2005), Sofu and Altan (2008) and Kaufman (2014)
- General points
 - The choice of the LC is not arbitrary or lexicalized
 - It is subject to several dissimilation constraints or OCP (Leben 1973, McCarthy 1986, a.o.)
- Issues with the previous studies
 - The studies converge on the importance of C_1 and C_2 , but the rest of the base is usually disregarded.
 - * Wedel (1999, 2000) explicitly mentions that there should be a cut-off after C_2 (see also Kelepir 2000).
 - The choice of the relevant features is usually heuristic.
 - The judgements are often based on the researcher's intuitions only. - The experiments are exclusively designed for Forced-Choice.

Experiment Design

Rating Task: Design

- 162 items were tested (evenly divided into 5 lists).
- Each participant was asked to perform both a rating task and a forced-choice task (not reported here). The order of the tasks was randomized.
- For each base form, all four of its reduplicated forms (each with a different LC) were shown on the same screen. The order of these forms was randomized per participant.
- Items were presented orthographically.
- Each reduplicated form was rated on a scale of naturalness:
- DOĞAL DEĞİL 'not natural' [1 to 7] DOĞAL 'natural'
- Data was collected using Experigen (Becker 2010).
- 209 participants were analysed (out of the 283 participants tested). - Filters: Turkish as L1; born in Turkey; no language-related disorders; reported their gender, education level and whether or not they have linguistic training.
- Each item was rated by at least 40 participants.

Selected References

Özgür Demircan. "Emphatic reduplication in Turkish". In: Studies on modern Turkish: Proceedings of the 3rd conference on Turkish *linguistics.* 1987, pp. 24–41 Alan Yu. "Dissimilation and allomorphy: The case of Turkish emphatic reduplication". In: UC-Berkeley ms (1999) Meltem Kelepir. "To be or not to be faithful". In: Studies on Turkish and Turkic Languages: Proceedings of the Ninth International Conference on Turkish Linguistics. 2000, pp. 11–18

Hatice Sofu. "Acquisition of reduplication in Turkish". In: Studies on Reduplication. Mouton de Gruyter, 2005, pp. 493-509 Peter Graff and T Jaeger. "Locality and feature specificity in OCP effects: Evidence from Aymara, Dutch, and Javanese". In: Proceedings from the annual meeting of the Chicago linguistic society. Vol. 45. 1. Chicago Linguistic Society. 2009, pp. 127–141

OCP Effects in Turkish Partial Reduplication: Locality and Feature Specificity

 26^{th} Manchester Phonology Meeting – 24-26 May 2018 Kevin Tang • linguist@kevintang.org; Faruk Äkkuş • akkusf@sas.upenn.edu

Present Stu

Re-examined the • Feature – by • Locality – a Employed both th

• Many bases namely, quit

• Most studies Modelled the OC analysed the effect Dutch and Aymara

• Allowing us as nuisance

Analyses: I

Feature Specifici

- Focused on G they contain • Compared mu
- Total identity
- Model compa

ıdy	Conclusions
nature of (i) similarity and (ii) proximity of OCP γ quantitatively examining all features, rather than heuristically. Il consonants in the base, not just C ₁ and C ₂ the forced-choice task and the rating task have alternative LCs across participants in the forced-choice task, the a bit of variation (see also Wedel 1999, 2000) is did not utilize the rating task P effects using regression following Graff and Jaeger (2009) which et of OCP on the generative potential of syllable types of Javanese, ra. to statistically examine a number of competiting OCP factors as well factors	 The choice of LC is indeed motivated by OCP effects OCP constraints are more graded than they have been previously proposed The OCP constraints need to treat individual features as free parameters in the similarity computation across all consonants in the base Position in syllable structures interact conditions the OCP effects The strength of OCP is a function of both the proximity from LC and whether the consonant is a coda or not Methodologically, we demonstrated that the precise nature of OCP effects can be revealled using statistical model comparisons on goodness ratings (Graff and Jaeger, 2009). Acknowledgements: Ryan Bennett, John Harris, Andrew Nevins, Hezekiah Akiva Bacovcin, audience at OCP 15th.
Feature Specificity of OCP	Analyses: Positional Effects by Syllable Structure
ty: At what level of granularity do we expect OCP to operate over? CONSONANT INITIAL items into three groups by the number of consonants in the base form. $(42 \ge C_1C_2, 57 \ge C_1C_2C_3, 30 \ge C_1C_2C_3C_4)$ ultiple mixed effects models with different combinations of: 7, Individual Features: OCP-[+feature] _i , Sum Feature: $\sum OCP$ -[+feature] _i trison using AIC (same results with BIC, and likelihood χ^2 -test) $\frac{C_1C_2 \qquad C_1C_2C_3 \qquad C_1C_2C_3C_4}{Model_{ID} \qquad 17025.01 \qquad 23551.39 \qquad 12173.19}$ Model _{SF} 16709.70 22911.93 12039.80 Model _{IF} 16157.00 22150.26 11392.33 Model _{ID+SF} 16564.84 22550.91 11712.59 Model _{ID+IF} 16074.27 21869.73 11156.53 able 1: Model comparison for feature specificity: AIC stently yielded best fit across item groups (C_1C_2, C_1C_2C_3, C_1C_2C_3C_4) es that both total identity and partial identity played a role and Coon 2009). CP of individual features are weighted differently. istent with Graff and Jaeger (2009)'s findings.	by have bit detailed in a subset of frequent synaple structures and examined then positional effects separately. $\frac{\hline C_1C_2}{C_1VC_2(23)} \xrightarrow{C_1C_2C_3} \xrightarrow{C_1C_2C_3} \xrightarrow{C_1C_2C_3C_4} \xrightarrow{C_1C_2C_3C_4C_5} \xrightarrow{C_1VC_2VC_3C_4VC_5(5)} \xrightarrow{C_1VC_2C_3V(14)} \xrightarrow{C_1VC_2C_3V(14)} \xrightarrow{C_1VC_2VC_3VC_4(8)} \xrightarrow{C_1VC_2VC_3VC_4C_5(1)} \xrightarrow{C_1VC_2VC_3VC_4C_5(1)} \xrightarrow{C_1VC_2VC_3VC_4(1)} \xrightarrow{C_1VC_2VC_3VC_4(1)} \xrightarrow{C_1VC_2VC_3VC_4V(1)} \xrightarrow{C_1VC_4VC_4VC_4VC_4VC_4V(1)} \xrightarrow{C_1VC_4VC_4VC_4VC_4VC_4V(1)} \xrightarrow{C_1VC_4VC_4VC_4VC_4VC_4VC_4V(1)} \xrightarrow{C_1VC_4VC_4VC_4VC_4VC_4VC_4V(1)} C_1VC_4VC_4VC_4VC_4VC_4VC_4VC_4VC_4VC_4VC_4$
Positional Specificity of OCP ificity: To examine the importance of consonants beyond C_2 (namely predictors that are associated with each consonant position in bulk $\frac{\hline C_1C_2 C_1C_2C_3 C_1C_2C_3C_4}{Drop C_1 812.55 1674.94 639.81}$ $Drop C_2 870.18 1190.65 390.95$ $Drop C_3 - 552.42 190.50$ $Drop C_4 - - 383.67$	C1 C2 C1 C2 C3 C1 C2 C3 Consonant position C1 VC2C3VC4
Table 2: Model comparison: $AIC_{subset} - AIC_{superset}$ FANCE DECAY does not <i>always</i> play a role not necessarily drop as distance increases. items, there is an increase in importance from C ₁ to C ₂ . C ₃ C ₄ , C ₄ is more important than C ₃ . the OCP effect interacts with syllable structures? Asset decay in long-distance phonological processes". In: <i>The Proceedings of the 32nd West Coast Conference</i> pp. 72-81 ssica Coon. "Distinguishing total and partial identity: Evidence from Chol". In: <i>Natural Language &</i>	

 $Model_{ID+IF}$ consistent of the second se • This indicat

- (Gallagher a
- Crucially O
- This is cons

Analyses: I

Positional Speci C_3 and C_4)

• Drop OCP p

 The choice of LC is indeed me OCP constraints are more gray. The OCP constraints need to similarity computation across Position in syllable structures. The strength of OCP is a function the consonant is a coda or not the consonant is a coda or not be revealled using statistical Jaeger, 2009).
► Acknowledgements: Ryan Ben Bacovcin, audience at OCP 15th.
Analyses: Positional E
Syllable Structure: Focused on a suppositional effects separately. C_1C_2 $C_1C_2C_3$ C_1VC_2 (23) $C_1VC_2VC_3$ (37) C_1VC_2V (19) $C_1VC_2C_3V$ (14)
$C_1 V C_2 V (13) = C_1 V C_2 C_3 V (14)$ $C_1 V C_2 C_3 (4)$ $C_1 V C_2 V C_2 V C_4 V C_$
set - AIC superset
- 002 - 002
The patterns can be explained with a DISTANCE DECAY and CODA VS. ONS Why Coda > Onset? LC itself is also An example: sik 'tight' vs. $siki$ 'freque • C ₂ /k/ should disprefer LC [p]

Surprisingly, DIS

- ΔAIC does
- With C_1C_2
- With C_1C_2
- Perhaps the

Jesse Zymet. "Distance-ba on Formal Linguistics. 2014, Gillian Gallagher and Jes Linguistic Theory 27.3 (2009)

Effects by Syllable Structure

