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Abstract

This thesis presents a new corpus containing ≈ 5,000 instances of naturally occur-

ring misperception of conversational English, which is the result of a standardised

format for the orthographic and phonetic transcriptions and meta-data of existing

naturalistic corpora.

I examined top-down phonetic/phonological factors and bottom-up lexical fac-

tors for their contributions in naturalistic settings. On the feature level, voic-

ing/place/manner confusions were best explained using sonority, featural underspec-

ification (Lahiri and Reetz, 2002) and markedness (Lombardi, 2002), and vowel

height/backness confusions using perceived similarity (Steriade, 2001) and chain

shifts (Labov, 1994a).

On the segment level, I found that confusions can be explained with acous-

tic/featural distances, and extreme signal-to-noise ratio and narrow bandwidth were

less ecologically valid. Furthermore, three well-known sound changes (TH-fronting,

velar nasal fronting and back vowel fronting) were consistently found in naturalistic

and experimental data.

On the syllable level, codas are more likely to be misperceived than nuclei/onsets

for monosyllables, but onsets are more likely to be misperceived for polysyllables.

Fewer errors occur in the stressed syllables than in unstressed syllables in polysyllabic

words, but not monosyllables. Initial syllables are more likely to be misperceived than

medial syllables, which in turn are more prone to misperception than final syllables.
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On the word level, listeners were found to perceive a word of similar frequency as

the intended word in a misperception – but crucially not a more frequent word. This

supports the graceful degradation account of a malfunctioning system (Vitevitch,

2002). On the utterance level, listeners were sensitive to the predictability of a word,

suggesting that less predictable words are more likely to be misperceived.

Together, these analyses establish the naturalistic corpus as an ecologically valid

resource and a benchmark of misperception, bridge the gap between experimental

and naturalistic studies, and highlight the need of examining misperception with

units larger than nonsense syllables.
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Chapter 1

Introduction

This thesis presents a new corpus of naturalistic misperception, the largest corpus

of its kind to the author’s knowledge. Using this new corpus, I present a series of

analyses showing how naturalistic misperception is influenced by factors from the

lowest level of features (e.g. more sonorous manners are more robust in noise) to the

highest level of conditional probabilities of words in an utterance (e.g. unpredictable

words are harder to perceive correctly). Crucially, most of these factors are above

and beyond what classic experimental confusion studies, which focus on the level

of features, such as Miller and Nicely (1955) and Wang and Bilger (1973) can iden-

tify. In addition, I compare segmental confusions from naturalistic data with those

from experimental data in order to establish the ecological validity of experimental

controls.

These analyses have multiple intended outcomes. The first is to provide a nat-

uralistic corpus that could serve as an ecologically valid resource and benchmark

of misperception in order to bridge the gap between experimental and naturalistic

studies. This could be accomplished by identifying similarities within the new corpus

to existing experimental misperception data and by examining whether the confu-

sion patterns can be explained using theories from psycholinguistics, phonetics and

39



phonology. Secondly, they highlight the need for examining misperception with units

larger than nonsense syllables (cf. Miller and Nicely, 1955; Wang and Bilger, 1973).

This can be accomplished by identifying theoretically informed confusion patterns,

in units larger than nonsense syllables.

Overall, this thesis highlights the importance of understanding a common speech

misperception phenomenon that has a direct impact on everyday communication.

Most of the time, speakers and listeners can utilise their knowledge of language with

minimal effort; however, speakers sometimes would make errors in production and/or

listeners make errors in perception. This study focuses on the errors of perception,

that is, when the speaker’s utterance does not match what the listener hears. When

communication operates smoothly, one can only assume that the listener’s under-

standing is identical to the utterance of the speaker, but it is only when communi-

cation breaks down that we are able to disentangle what was said from what was

received, as outlined in Laver (1970, pp. 61): “The strategy of inferring properties of

control systems from their output can be applied not only to the efficient operation

of these systems, but also to their output when malfunctions occur. The evidence

from characteristic malfunctions is more penetrating than that obtained when the

system is operating efficiently.” Therefore speech misperception can provide us with

new insights about the mechanisms that underlie speech perception.

The key question is where should we look for these errors. Perceptual errors can

be found both in the laboratory (henceforth experimental misperception) and in our

everyday life (henceforth naturalistic misperception).

Data of experimental misperception has so far been collected by presenting par-

ticipants with stimuli (syllables, words, sentences) that are artificially degraded, and

the participants are then asked to repeat what they have heard (Miller and Nicely,

1955; Felty et al., 2013). Data of naturalistic misperception are collected by people

who are usually the interlocutors (the listener or the speaker) of a conversation in
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which the errors occur. These errors are simply noted down and later reported to

the researchers who are collecting them, raising the question if this approach can

accurately and adequately reveal the perceptual mechanisms behind misperceptions.

In speech production, lab speech has often been criticised as being unnatural,

overly clear and over planned, compared to spontaneous speech which is rich in var-

ious patterns but lacks experimental controls (Xu, 2010). Similar arguments can be

made for speech perception. On the one hand, experimental studies of speech per-

ception can be highly unnatural. As stimuli are often presented to participants arti-

ficially masked with noise and other distractors, and participants are then required

to give a response to what they thought they heard. In real life, when listeners are

uncertain about what they heard, they often have the option of asking for clarifica-

tion, and are not required to understand immediately or give an instant response.

Secondly, listeners rarely need to tell others what they heard in real life. Thirdly, in

an experimental situation, listeners are not engaged in a conversation and there is no

real communicative need. These factors contribute to overgenerating errors. With-

out prior contexts or communicative need, utterances in isolation are much harder

to perceive as there are no top-down factors (such as lexical priming) to aid the

perceptual process. If participants are required to give a response when they have

none to give, then these guesses may be no more than “noise” and the unnaturalness

immediately casts doubt about the ecological validity of the experimental data.

That isn’t to say that experimental speech under laboratory conditions cannot

contribute to further understanding of speech perception. The stimuli and, to a

lesser extent, the listeners in experimental conditions can be carefully selected and

controlled for and consistency can be applied to the listening conditions. In contrast,

we have no control over the “stimuli” in everyday life as utterances can be of any

length and masked with any kind of noise. For research purposes, the demographics

of the listeners in the naturalistic data are not always available.
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More importantly, there are top-down factors that can influence naturalistic mis-

perception. Studies have shown that the listeners’ age (Mirenda and Beukelman,

1987; Nábělek, 1988; Munson et al., 2003), accent (Bradlow and Pisoni, 1999; Pinet

and Iverson, 2010), the listening conditions, and the length and linguistic structure

of the utterances (Wingfield et al., 1985) can all have an effect on perception. There-

fore, the lack of experimental rigour that may arise when using naturalistic data

can cast doubt on whether meaningful perception patterns can be identified and are

not masked by the interactions between top-down factors. Despite these drawbacks,

under Cognitive Ethology, a research approach to modelling cognition, I argue that

naturalistic misperception is nonetheless preferable, and should serve as a benchmark

for speech misperception.

The primary goal of Cognitive Ethology is to understand the functioning of hu-

man cognition in the real world and is based on the four assumptions listed below

verbatim (the texts in italics are my own emphasis).

Invariance The dynamics of cognition are, at least in part, contextualized. Variabil-

ity in cognitive processing that arises from contextual differences is important

to understand. Only by explaining such variability will meaningful and stable

cognitive processes be discovered.

Control Important insights into cognition will be gained when individuals behave

in an unconstrained and uncontrolled manner in their natural environments.

The goal is to measure naturally occurring variance rather than the variance

that emerges from controlling the system.

Cognition as a distributed system Cognition is a non-linear systemic process.

Important aspects of cognition will only emerge when embodied individuals are

considered as a part of a system that involves their natural environment (in-

cluding other individuals).
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Subjective reports Subjective reports provide a direct measure of people’s con-

scious experiences, goals, intentions, and beliefs pertaining to their attentional

behaviour in everyday environments.

These four assumptions of cognitive ethology underline the need to study speech

misperception that occurs in real life. Firstly, it is true that there are many factors

that can affect naturalistic misperception, and these factors cannot be controlled for.

However, it is by understanding these variabilities in context that we may be able to

understand the robustness of perceptual processes that are found in the laboratory.

Secondly, the initial research focus should be on naturally occurring variability, rather

than variability that emerges from controlling the cognitive system, such as adding

noise to the stimuli. Thirdly, listeners and their natural environment (with different

contexts, noise types etc.) should be considered as part of a system, and this cannot

be replaced by putting listeners in laboratory environments. Fourthly, subjective

reports (which are an essential part of naturalistic data) of misperception can serve

as a direct measure of people’s conscious experiences and perceptual behaviour in

everyday life. Finally, naturalistic data can be used to generate hypotheses (Moisl,

2007), which can be tested under controlled experimental settings.

The pros and cons of speech misperception within and outside of a laboratory

setting were discussed in the previous sections. Let us move on to the following

sections. Section 1.1 provides a summary of some of the classic studies of speech

misperception in a laboratory setting and Section 1.2 describes important studies

wich have taken place outside of a laboratory setting. To better understand whether

experimental and naturalistic data can complement each other, Section 1.3 presents

arguments for and against naturalistic data. Section 1.4 summarises the review of

speech misperception in this chapter. Finally, Section 1.5 outlines how this thesis is

organised.
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1.1 Speech misperception in the laboratory

The literature of laboratory based speech misperception is extensive, and this section

does not aim to summarise everything but rather the key work that is particularly

relevant to this thesis. Two particular experimental studies are summarised because

they were the earliest large scale misperception studies in laboratory. Given that

they are the cornerstone of laboratory misperception, both their methodologies and

insights are particularly valuable.

1.1.1 Classic confusion experiments

Two large scale confusion experiments in particular have had a major influence on

work in this field, Miller and Nicely (1955) and Wang and Bilger (1973).

Miller and Nicely (1955) examined sixteen English consonants which are about

three quarters of the consonant phonemes. The consonants were embedded in a

nonsense CV syllable with the /a/ vowel in father. The stimuli were frequency

distorted by applying low-pass filters with different cut-off levels and masked with

noise at different signal-to-noise ratios. The stimuli were then presented to listeners

in a forced-choice task with the output in confusion matrices of 16 by 16 tables,

showing the successful and unsuccessful perception counts of the consonants. Wang

and Bilger (1973) tested a wider range of consonants and also syllable forms – CV and

VC nonsense syllables. In their analyses, both studies, and many other researchers

after them, utilised the idea of distinctive features and information transfer as a way

of explaining how listeners discriminate between different phonemes.

Traditionally, the perception of phonemes was assumed to rely on the identifica-

tion of distinctive features by the auditory system (Kollmeier, Brand, and Meyer,

2008). These distinctive features are perceptually, acoustically and articulatorily

defined and have unary or binary values, such that all consonants can be uniquely

44



defined by a distinctive set of features. Each of these features is transmitted via its

own transmission channel to the listener’s ear. The signals were then decoded by the

central auditory system. The listener would recognise and combine these features to

determine the identity of the phoneme.

Both studies employed the transinformation analysis, which is based on informa-

tion theory (Attneave, 1959; Shepard, 1972). It quantifies the amount of information

by particular features which are successfully transferred to the listeners’ perceptual

system. Miller and Nicely (1955) analysed five articulatory features, voicing, nasal-

ity, affrication, duration, and place of articulation, by breaking down the confusion

matrix into five smaller matrices (one for each feature) which represent five transmis-

sion channels. They concluded that voicing and nasality were transferred the most,

while place was most affected by low pass filters and noise; furthermore, Miller and

Nicely (1955) found that these features/channels were relatively independent, which

supports the idea that the perception system consists of individual channels rather

than a single complex one.

Wang and Bilger (1973), on the other hand, arrived at a different conclusion with

transinformation analyses by developing and using a sequential method of partition-

ing the transmitted information, called sequential information analysis (SINFA). This

method aims to partial out the internal redundancy of a feature amongst a set of

given features. It first identifies the feature that gives the highest fraction of transfer,

and then selects the most important feature from the remaining features, given the

previously selected feature(s). The process is then applied iteratively, providing an

estimate of the importance of each feature independently. Wang and Bilger (1973)

concluded that different sets of features perform equally well in capturing the in-

formation transferred and the perceptually important features were inconsistently

identified, casting doubt on the idea of natural perceptual features.
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1.1.2 Later work on speech misperception

There is no doubt that speech perception studies could benefit from examining the

robustness of speech in a wide range of adverse conditions caused by external factors

such as reverberation (e.g. depends on the size, shape and materials of the room),

environmental noise (e.g. factory noise), competing talkers (e.g. in a cocktail party

scenario) and channel distortions (e.g. the transmission system in an auditorium)

(Assmann and Summerfield, 2004).

Moreover, a range of internal factors has been extensively investigated, for in-

stance, perceptual adaptation when encountering unusual accents and the effect of

talker-listener accent similarity (Pinet, Iverson, and Evans, 2011; Pinet, Iverson,

and Huckvale, 2011; Iverson and Pinet, In press) as well as speech perception in

typical and atypical populations (Hazan, Messaoud-Galusi, and Rosen, 2013; Green,

Faulkner, and Rosen, 2012; Rosen, Adlard, and Lely, 2009).

Much of this work has primarily used speech in noise tests, along with other tests

such as text comprehension, connected discourse tracking and sentence verification

tasks, to measure global performances. These studies provide an indication of the

real world performance of listeners but do not provide detailed analyses of how do

people make errors.

In fact, many models have been developed to predict overall speech intelligibility

in various adverse distortion conditions using different signal parameters, including:

1) Articulation Index (AI) (French and Steinberg, 1947; Steeneken and Houtgast,

1980; Rhebergen, Versfeld, and Dreschler, 2006) - macroscopic models that considers

the influence of the frequency content of speech on intelligibility; 2) Speech Intelli-

gibility Index (SII) (ANSI, 1997) which considers the spread of masking, standard

speech spectra and the relative importance of frequency bands; 3) Speech transmis-

sion index (STI) (International Electrotechnical Commission, 2003) which uses the

modulation transfer function of a speech transmission system (Kollmeier, Brand, and
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Meyer, 2008).

These models have shown success in predicting the average recognition rate for

a given degraded speech sample; however, they do little to inform on the detailed

process of speech perception into the detailed process of speech perception. One of

the challenges would be to predict listener’s responses to individual degraded speech

tokens. To meet this challenge, microscopic models were developed, for example

1) Holube and Kollmeier’s (1996) microscopic model which is based on a model

of the human auditory system and an automatic speech recognition system and 2)

Cooke’s (2006) glimpsing model which identifies spectro-temporal regions of speech

which would be most likely to survive energetic masking (which is when the noise

interferes with the speech signal in the acoustic environment (Lidestam, Holgersson,

and Moradi, 2014) and others such as Régnier and Allen (2008). These models have

shown limited success and are restricted to very small domains, such as nonsense

VCV syllables. Perhaps the first to step outside these highly restricted domains

was Cooke (2009) which explored the idea of constructing a corpus of consistent

confusions on a word level.

1.2 Speech misperception beyond the laboratory

The basic information of naturalistic misperception studies will first be introduced

in this section. The backgrounds and research findings of four existing naturalistic

misperception studies of conversational speech are then summarised. The last section

summarises the nature of naturalistic misperceptions of sung speech (also called

Mondegreens) and how they may differ from misperceptions of conversational speech.

When trying to gain a better understanding of a phenomenon, the first place

to look would be where the phenomenon naturally occurs. No study of speech

misperception is complete without an understanding of how inferences are made
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by the listener in our everyday life. In fact, the concept of mishearing surfaces in

our lives in many ways, such as in misheard song lyrics such as hearing “kiss this

guy” instead of “kiss the sky”. Not unlike Freud’s belief that slips of the tongue can

reveal our subconscious thoughts, “slips of the ear” have the potential of revealing

our speech perceptual processes.

In fact, naturalistic corpora for production errors do exist. Naturalistic error cor-

pora of slips of the tongue (Fromkin, 1973) and tongue twisters (Shattuck-Hufnagel

and Klatt, 1979) have provided insights about the processes underlying fluent speech

production. The largest corpus of this type is Fromkin’s Speech Error Database

(Fromkin, 2000) containing about 9,000 instances of speech errors across English,

French, German and Italian. The database was developed by combining multiple

speech error corpora from independent researchers. However in speech mispercep-

tion (sometimes called “slips of the ear”), existing naturalistic data and their analyses

are scarce.

The first corpus of naturalistic misperception was compiled by Meringer and

Mayer (1895) and Meringer (1908). The corpus consists of 47 instances of German

misperception, e.g. Durst oder Hunger perceived as Verdruss oder Kummer. Celce-

Murcia (1980) later added to these first 47 instances. Even with such a small sample,

some observations emerged. Firstly, Meringer (1908) found that consonants are

misperceived more frequently than vowels. Secondly, Celce-Murcia (1980) observed

that many of the instances involved proper names, and the perceived utterances

tended to be grammatically correct, but they were inappropriate to the context (in

terms of semantics and pragmatics).

The research potential of analysing naturalistic misperception is apparent even

from Meringer’s small corpus and further motivated error researchers to collect and

analyse naturally occurring (naturalistic) errors made by us everyday (Browman,

1980; Cutler and Butterfield, 1992; Bond, 1999; Labov, 1994b; Labov, 2010b).
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Speech misperception is generally agreed to be the misperception of an intended

speech signal (Bond, 1999). The word “intended” is important here, as speech misper-

ception is not speech misproduction in which the mismatch lies between the intended

utterance (which is not actually produced) and the actual utterance (which is pro-

duced). In speech misperception, the mismatch lies between the produced utterance

(by a speaker) and the perceived utterance (by a listener), whereas in speech mis-

perception there is no mismatch between the intended utterance and the utterance

produced by the speaker. The errors come from the perceiver; for example, a speaker

intended to produce doll, and he successfully produced doll, but a hearer might per-

ceive doll as dog. In general, there are two types of speech misperceptions, those

from conversational speech and those from music. In this thesis, unless stated other-

wise, all misperceptions are from conversational speech. The nature of Mondegreens

is summarised in the last section.

The data used in this thesis were sometimes collected by the researchers them-

selves, or in some cases by a team of trained phoneticians, but in most cases they are

collected by a third party, e.g. friends, family, students etc. The data collected by

people with knowledge of phonetic transcription would usually provide the transcrip-

tions of the intended utterance and the perceived utterance. In some cases, detailed

demographic information and contexts were also documented.

In the following sections, four existing studies of naturalistic misperception, and

the nature of Mondegreens are discussed.

1.2.1 Browman (1980)

Work on speech perception has so far focused on lower level units such as features

and phonemes (Miller and Nicely, 1955; Wang and Bilger, 1973), but the higher level

units such as syllables, words, and phrases have been less explored. It is this research

gap that motivated Browman (1980) to focus on the interaction between higher level
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processes such as lexical decisions and lower level processes such as acoustic analysis.

To explore the interaction between lexical decisions and acoustic analysis in

speech perception, the author collected 222 misperception instances of American

English in order to relate patterns of segmental misperceptions to syllable structures.

The analyses first calculated the rate of segmental errors by syllable constituency (on-

set, nucleus and coda), and stress (stressed and unstressed) for both monosyllabic

and polysyllabic words, and also syllable positions (word initial, medial and final)

for polysyllabic words. The author then separated the segmental errors into two

categories, those containing one featural difference between the intended segment

and the perceived segment (e.g. van → fan, “→” denotes perceived as), and those

containing multiple featural differences (e.g. clean teeth by tonight → my tea butter

knife). The author assumed that the errors containing one featural difference were

the result of acoustic errors, and gross errors were the result of lexical errors.

The distribution of lexical errors in unstressed polysyllabic words correlates with

the positional saliency on lexical retrieval. In lexical retrieval, initial and final

phonemes are more salient cues than medial phonemes (Horowitz, White, and At-

wood, 1968). Fewer lexical errors were found word-initially and word-finally than

word medially. The distribution of lexical errors therefore supports the experimental

findings that initial and final phonemes are more salient cues for lexical retrieval

because they are less susceptible to lexical errors. However the distribution of lexical

errors in stressed polysyllabic words and monosyllabic words had an entirely different

pattern, and the author did not fully explain this mismatch.

Different distributions of acoustic errors were found. Stressed syllables in poly-

syllabic words were found to be less frequently misheard than unstressed syllables.

This can simply be explained by the fact that stressed syllables are acoustically more

salient. However, the reverse pattern was found in monosyllabic words, with stressed

syllables being misheard more often. The author explained by referring to a report-
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ing bias in the naturalistic data, such that people are less likely to report unstressed

monosyllabic words in a misperception because these unstressed syllables are more

likely to be function words (e.g. of ) which have low information content and are

therefore less noticeable even when they are misheard. A syllable constituency effect

was found with all but stressed monosyllables, such that codas were less erroneous

than onsets. The author explained this with reference to acoustic differences between

onsets and codas.

Based on these findings, the author proposed that there are three modules in-

volved in speech perception, a lexical decision module, an acoustic analyser, a seg-

ment recognizer which overlaps with a lexical decision module. The acoustic analyser

and the segment recognizer make different contributions according to different posi-

tions within a word, correlating with the error rates at these positions. Therefore,

the segment recognizer focuses more on word final and word initial positions than

on word medial positions, and the acoustic analysers focuses more on coda and word

final positions.

Acoustic information was first fed into the acoustic analyser. The output was

then fed into the segmental analyser. The new output was then fed into the lexical

decision module, which in turn affected the segment recognizer. The proposed model

therefore links acoustic analysis, which is a “low level” process, with lexical decision

making which is a “high level” process.

1.2.2 Bird (1998)

Bird (1998) collected 300 hearing errors of British English from naturally occurring

conversation. Four analyses were conducted using the data in order to replicate or

extend previous analyses of naturalistic misperception.

The first analysis was conducted to replicate the analyses of naturalistic misper-

ception by Garnes and Bond (1980), which found that the stress pattern is almost
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always retained, except when unstressed syllables are deleted or inserted.

Of the 300 instances of misperceptions in this study, the stress pattern was re-

tained in 62% of the data, e.g. bleach it → leaches. 35% of these were instances

when the number of stressed syllables was retained but weak syllables were inserted

or deleted, e.g. Have you applied? → are you blind?. Only 3% showed a change in

stress pattern, e.g. I’ve walked a long way today → I’ve put on a lot of weight. Bird’s

(1998) findings using the independent data of misperceptions therefore agreed with

Garnes and Bond’s (1980) analyses.

The second analysis assessed the conclusion of Miller and Nicely (1955) and Gar-

nes and Bond (1980) that place confusions are more frequent than manner confusions,

which in turn are more frequent than voicing confusion. This was again confirmed

using the author’s data. Counting only the substitution errors (ignoring insertion,

deletion and the correctly perceived segments), 40% were place errors, 35% were

manner errors, and 25% were voicing errors.

The third analysis examined whether the frequency of a phone as the intended

segment in a substitution error correlates with the frequency of the same phone

found in the language. Say that /t/ is frequently the intended segment of a substi-

tution error. Could this be because /t/ is a frequent segment in the language? In

other words, is there a target bias due to frequency? Similarly, the question arises

whether the frequency of a phone being the perceived segment of a substitution error

correlates with the frequency of the same phone in the language; in other words, is

there a response bias due to frequency? Both correlations were found to be highly

significant (R = 0.80 – 0.93) for both consonants and vowels.

The fourth analysis attempted to replicate Cutler and Butterfield’s (1992) find-

ings of juncture misperception using naturalistic misperception data. Cutler and But-

terfield (1992) found that listeners tended to insert word boundaries before strong

syllables, and delete word boundaries before weak syllables. The resultant words
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from inserting word boundaries before strong syllables were more likely to be content

words (e.g. analogy → and allergy), and similarly the words with word boundaries

before weak syllables tended to be function words (e.g. effective → effect of ). These

findings were again confirmed in Bird (1998).

In summary, the author managed to replicate the previous findings of studies

that also used naturalistic misperception data. This reinforces the robustness of the

patterns examined as well as the stability of the naturalistic misperception data.

1.2.3 Bond (1999)

Bond (1999) presented a corpus with almost 900 instances of misperceptions of

mainly American English with 783 instances produced by adults and a subcorpus of

105 misperception instances by children. Overall, the author classified three main

types of errors, simple consonant misperceptions, simple vowel misperceptions (both

with one segmental difference) and multiple complex misperceptions of more than

one segmental difference. About one-third of the instances consisted of simple conso-

nant misperceptions, two-thirds consisted of complex misperceptions and less than

50 instances were simple vowel misperceptions.

Errors were identified by manual categorisation, e.g. deletions, substitutions,

and reorderings. The confused segments were not extracted or explicitly analysed;

instead, the studies provided an overview of the distribution of different classes of

errors at different linguistic levels. The analyses focused on 1) vowel misperceptions

and their interaction with stress; 2) consonant misperceptions in simple (one seg-

mental change) and complex cases (multiple segmental changes); 3) misperception

of syllable shapes when syllable insertions/deletions occurred; 4) lexicon, such as

the role of frequency, nonwords and morphology; 5) syntax, such as grammaticality,

constituent boundaries. The percentages and discussions of certain instances of the

errors were provided per category but they lacked statistical analyses.
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The descriptive analyses (as mentioned above) were conducted separately using

the adult misperception data and children misperception data. The confusion pat-

terns with the children’s data were on the whole similar to those found in the adult

data (Bond, 1999, pp. 83–98). However, children produced errors less constrained by

the language. For instance, they were more likely to perceive non-words, which sug-

gests that they are less constrained by the lexicon, e.g. to missions was perceived as

temissions ; and they were more likely to perceive ungrammatical phrases/sentences,

suggesting that they were less constraint by syntax, e.g. cuff him was perceived as

cough him, and Mayor McCheese was perceived as Mayor get cheese. Together this

suggests that children use the knowledge of their language less often than the adults

in perception, presumably because they are still acquiring the language.

In summary, the author extensively summarised the patterns of misperceptions

at different linguistic levels and demonstrated how naturalistic misperception data

can be used to generate hypotheses of speech misperception that can be subsequently

tested in laboratory conditions. This was indeed the case with Cutler and Butterfield

(1992) and Vitevitch (2002). Both studies relied on Bond’s (1999) data to generate

hypotheses which were tested experimentally.

1.2.4 Labov (1994b) and Labov (2010b)

Labov and his colleagues collected 872 misperception instances over the course of

fourteen years. Unlike Browman (1980), Bird (1998) and Bond (1999), Labov (1994b)

and Labov (2010b) focused on how misperceptions motivate sound change rather

than linguistic structures.

Labov (2010b) classified the instances of misperception by assigning a tertiary

scoring scheme relating to how each of the five linguistic factors (lexicon, dialect,

phonology, pragmatics and syntax) was inhibiting, promoting or neutral to the mis-

perceptions. This classification reflected the relative effect of these factors to the
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misperception instances. It was found that phonology was the main promoter, while

pragmatics was the main inhibitor. Dialect came second with 27% as the promoter

of misperceptions.

When studying sound change, one crucial factor is to examine the frequency of

confusions, such that more frequently confused pairs of segments are more likely to

merge. In relation to sound change, Labov (1994b) examined the relative rates of

vowel misperceptions to support the concept of subsystem. Subsystems are defined

by Labov (1994b) as a set of vowels that maximally subjects to pairwise confusion.

Labov (1994b) predicted that confusions across subsystems should be less frequent

than those within subsystems.

Labov (1994b) classified the misperception instances into two types, “global” and

“local” in order to test this prediction, and focused only on the local type. Global

misperceptions (or misunderstandings as he called them) are defined as cases in

which the phonetic conditions are degraded and the perceived utterance has very

little in common with the intended utterance, e.g. The mayor found an answer

for the Eagles. → Ralph Nader found an answer for the needles.. While local

misperceptions are defined to be dependent on the misperception of a particular

segment, which he suggested was due to the phonetic realisation of the segment,

e.g. I’d go to the Acme and bag → I’d go to the Acme and beg. Focusing on vowel

confusions, the author examined four segmental environments – post-vocalic nasals

(e.g. thi/n/k), /l/ (e.g. goa/l/ ), /r/ (e.g. fea/r/ ) and pre-vocalic obstruent-liquid

clusters (e.g. /bl/ack) – that tended to reduce the phonetic distance between vowels.

154 local misperceptions of these types were examined. Globally, it is not true

that there are more misperceptions within subsystems (78 out of 154) than across

subsystems (74 out of 154). However, a closer examination of their distribution

across the four segmental environments showed radical differences between the mis-

perceptions within and across subsystems.
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It was found that 40% of the misperceptions within subsystems occurred in one

of these four segmental environments, while 80% of the misperceptions across sub-

systems occurred in these same segmental environments. This distribution suggests

that after excluding misperceptions triggered by phonetically reduced environments,

misperceptions are more frequent within subsystems than across subsystems as pre-

dicted. More generally, the author used the frequency of local misperceptions to

strengthen the conception of phonological subsystems and phonological hierarchies.

1.2.5 Mondegreens

Mondegreens are the naturalistic misperception of sung speech. The term Monde-

green is, in fact, a Mondegreen itself. The writer Sylvia Wright published her own

misperception of a Scottish ballad in her magazine article (Wright, 1954), titled “The

Death of Lady Mondegreen”. The ballad is called “The Bonny Earl of Murray”:

Ye highlands, and ye lawlands, Oh! whair hae ye been? They hae

slaine the Earl of Murray, and layd him on the green.

This was misheard as:

Ye highlands, and ye lawlands, Oh! whair hae ye been? They hae

slaine the Earl of Murray, and Lady Mondegreen.

Two main differences between Mondegreens and misperceptions of conversational

speech are that Mondegreens involve sung speech and are masked with music. Sung

speech is different from spoken speech in a number of ways, such as duration, vowel

formant (Sundberg, 1970), intonation (Zatorre and Baum, 2012), pronunciation (us-

ing full vowels instead of schwas, e.g. evil could be pronounced as [i:vi:l]) etc. While

sung speech is almost always masked with music, spoken speech may be masked with

a wider range of noise types.
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Furthermore, words and melodies are processed interactively (Gordon et al., 2010;

Asaridou and McQueen, 2013). Listening to sung speech is a very different activity

compared to listening to a conversation. When listening to conversational speech,

the listener is often involved in the conversation, which provides a great deal of

contextual information. When listening to sung speech, the nature of the context

is more complex; it involves not only the listener’s immediate surrounding and the

activity that the listener is doing while listening to sung speech, but also the general

expectation of the artist and the genre of the song containing the sung speech.

In summary, it is clear that Mondegreens and misperception of conversational

speech differ in the production of language, the listening environment, the percep-

tion mechanism, and the available context. Given these differences, analyses of

naturalistic misperception should consider Mondegreens separately from those of

conversational speech, and Mondegreens are therefore not analysed in this thesis.

1.3 Complementarity of laboratory and naturalistic

studies

1.3.1 Arguments against naturalistic data

The naturalistic corpora have largely been observational data from uncontrolled sam-

pling, leading to many researchers questioning their value.

Cutler (1982) provided a detailed discussion on the reliability of this kind of data

with a focus on misproduction. From a theoretical point of view, the discussion

concentrated on the issue of detectability of different types of speech misproduction.

Using research on speech perception, she suggested that detectability is dependent

on factors including hearing errors, and perceptual confusions. The paper concluded

that since the level of detectability varies with the kinds of errors, the misproduction
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data from everyday life are confounded with the problem of detectability. Although

these confounds mostly apply to misproduction, a potential confound for speech mis-

perception is that they could in fact be misproduction. Another relevant confound

the paper pointed out is the issue of reconstruction (see also Cutler et al., 2000).

Consider that when the hearer perceives an implausible word, the hearer could re-

construct a plausible word (possibly even the same word as the intended word) as

a repair strategy. These misperception instances would not be recorded by the re-

porters, and there is no way of knowing how often this occurs, thus biasing the

data.

Ferber (1991) further argued against naturalistic speech misproduction data par-

ticularly highlighting the reliability of the collection process itself. The study gave a

list of possible factors that could affect the quality of the data, which is reproduced

below:

1. Failure to record

(a) Because slips were not recognized as such

(b) Because they were not remembered

(c) Because the decision - slip of the tongue or other speech error - was not

taken quickly enough or was wrong

(d) Because slips occur so frequently that there is not time to record them all

2. Erroneous recording

(a) Because slips were misheard

(b) Because of faulty recall on the part of the recorder

(c) Because slips were transcribed incorrectly

3. Erroneous classification

58



(a) Because slips were transcribed incorrectly

(b) Because the context was transcribed incorrectly

(c) Because the context was insufficient

The study examined the consistency of “on-line” collection of speech misproduction.

Three people were asked to collect instances of speech misproduction from a recording

of people making speech production errors. The results suggested that the consis-

tency between collectors was poor, there were not particular kinds of speech mispro-

duction that were more detectable than others as suggested by Cutler (1982), and

that production and perception cannot be separated when collecting instances of

speech misproduction. Again, the same arguments can be made for the consistency

of collecting instances of speech misperception.

1.3.2 Arguments for naturalistic data

Having cast doubts on naturalistic corpora, Cutler (1982) concluded that experimen-

tally induced speech misperception data could complement naturalistic data. Many

researchers did in fact use this approach when utilising naturalistic data, for example

in Cutler and Butterfield (1992), Bond (1999), Vitevitch (2002) and Labov (2010a)

and Labov (2010c). These studies all showed that their experimental findings agreed

with the naturalistic findings, and some of these studies are discussed below.

Cutler (1982) set out to test the rhythmic segmentation hypothesis, which pre-

dicts that English listeners operate on the assumption that strong syllables are likely

to be the initial syllable, while weak syllables are either not word-initial and if they

are, they are more likely to be grammatical words. The study started with an analy-

sis of 246 juncture misperceptions from Bond’s (1999) corpus, and found that there

is indeed more juncture insertions before strong syllables than weak syllables, and

more juncture deletions before weak syllables than strong syllables. In an experiment
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where low amplitude speech was used, the same error pattern was found in listeners’

misperception.

Vitevitch (2002) examined the role of lexical frequency and neighbour frequency

in speech misperception. First, using a subset of Bond’s (1999) corpus, it was found

the words involved in naturalistic misperception tended to have a higher frequency

than words randomly sampled from the lexicon which contradicted previous research

such as Brown and Rubenstein (1961). To elucidate this contradiction, two experi-

ments were conducted by manipulating the duration of words in auditory stimuli. In

one case, the duration was reduced by 25% for all words, and in the other case, all

words were made to be the same duration. It was demonstrated that the perceptual

consequences would be different for words varying in word frequency, depending on

their duration.

Overall, the author concluded that the advantage of high frequency words in

perceptual processing could be attenuated when there are other variations present

(as in naturalistic settings) such as phonological similarity (Luce and Pisoni, 1998)

and word duration (Wright, 1979), thus resulting in the contradictory findings in the

corpus analyses.

Finally, in Music Information Research, the misheard lyric matching problem has

been known to be a challenge for internet search engines. This is when users enter

misheard lyrics in a search engine hoping to find the intended lyrics. One model using

naturalistic corpora was introduced by Hirjee and Brown (2010) who utilised natu-

ralistic corpora of speech misperception but of lyrics rather than of conversational

speech. The data were 20,788 instances from misheard lyrics websites that collect in-

stances from the public. Hirjee and Brown (2010) introduced a probabilistic model of

mishearing by calculating phoneme confusion frequencies of the misheard lyrics. The

model was able to find up to 8% (of 146 misheard lyrics queries) more correct lyrics

than other methods that did not use these naturalistic data, such as phoneme edit
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distance (Levenshtein, 1966; Luce, 1986b). This study suggests that the use of nat-

uralistic corpora of misperception provides better predictions of people’s perceptual

errors of lyrics, thus strengthening the validity of the data.

1.4 Conclusion

Earlier work on large scale confusion experiments by Miller and Nicely (1955) and

Wang and Bilger (1973) provided insights into the overall pattern of perceptual con-

fusions in the lowest domain, auditory/phonetics, i.e. without any interactions with

any of the linguistic levels higher up. Despite the domain restriction, their confusion

matrices have been used widely to predict perceptual processes in many fields of

research (e.g. speech sciences, audiology, linguistics and computer sciences). Their

novel methodologies with information transfer shed light into the nature of distinc-

tive features in perception, and have remained a prominent method for analysing

confusion matrices. Later perception research with speech in noise investigated both

external factors such as environmental noise and speech transmission systems, as

well as internal factors, including the perception of unusual accents, and perceptual

difference between typical and atypical populations. However, much of these studies

only considered the global performances of the listeners in adverse conditions rather

than the nature of their errors. Furthermore, the existing macroscopic models (e.g.

Articulation Index (AI)) that predict how distorted speech will be perceived have

only focused on predicting the overall speech intelligibility as a numerical value. The

few microscopic models, (Holube and Kollmeier, 1996; Cooke, 2006), which aim to

predict listener’s responses to individual degraded speech tokens, are still in their

infancy and can only operate in very restricted domains, such as nonsense VCV

syllables.

Many researchers have seen the potential of using naturalistic data in error
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research as a testbed for theories and findings from laboratory studies, and thus

spawned a trend of naturalistic corpora collected by error researchers. Unlike nat-

uralistic speech misproduction, existing data and analyses for misperception were

scarce. The ones that did exist either have limited data (Browman, 1980), or the

analyses were not quantitative enough (Bond, 1999), or are restricted in their dialec-

tal interactions (Labov, 2010b). Although the data of the naturalistic corpora have

potential reliability issues, as argued extensively by Cutler (1982) and Ferber (1991),

the counter arguments and successes in using the naturalistic corpora to support ex-

perimental data have been overwhelming (Cutler and Butterfield, 1992; Bond, 1999;

Vitevitch, 2002; Labov, 2010a; Labov, 2010c; Hirjee and Brown, 2010).

1.5 Research aim and organization of the thesis

Having reviewed the research on speech misperception in the laboratory and beyond

the laboratory, it is clear that there is a gap between experimental work which has

controlled for and explored a limited number of factors at one time, and the research

that uses naturalistic corpora involving multiple levels of linguistic interaction. This

thesis aims to 1) bridge this gap by comparing naturalistic and experimental data and

2) establish the naturalistic corpus as an ecologically valid resource and a benchmark

of misperception by identifying the effect of both top-down and bottom-up factors

on misperception. The thesis is organised as follows.

First, both the quality and quantity of naturalistic misperception data need to

be improved. This thesis aims to achieve this by further collecting naturalistic data

with meta-data (e.g. the demographics of the interlocutors) and recompiling all

of the existing corpora into a standardized format for both orthographic and pho-

netic transcriptions. Such a mega corpus will allow more comprehensive analyses to

be done, especially in cases where it had not previously been possible due to data
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sparsity and because of the possibility of cross-validation of a phenomenon using

subsets of the corpus. Chapter 2 presents a detailed documentation of the compi-

lation process. The result of this approach is a mega corpus of naturalistic English

misperception with complete orthographic and phonetic transcriptions, alongside the

available meta-data. In addition, the corpus is phonetically aligned and syllabified

using data-driven methods to avoid issues of circularity.

Second, naturalistic misperceptions are affected by both low level factors (such as

acoustic/featural similarity) and high level factors (such as stress, syllable positions

and segmental/lexical frequencies). A number of questions arise as a result. How

much of an impact do these low level factors and high level factors make? How

similar are naturalistic misperceptions and experimental misperceptions? Are they

more similar in specific experimental conditions, such as signal to noise ratio (SNR)?

In other words, are there specific experimental conditions that are more ecologically

valid than others? In order to answer these questions with a focus on bottom-up

low level factors, Chapter 3 presents analyses of naturalistic misperceptions on a

featural level (place confusion, manner confusion and voicing confusion), as well as

on a segmental level. Low level phonetic factors were found to play a surprisingly

important role in consonant and vowel confusions, despite the potential effects of high

level factors. Extreme experimental conditions such as too high or too low SNRs,

or narrow bandwidths tend to be least ecologically valid. Asymmetrical patterns

of confusions were consistently found in both naturalistic and experimental data.

Together the results highlight the fact that naturalistic data are affected by low level

phonetic factors and are complementary to the experimental data.

Third, Chapter 4 examines whether naturalistic misperceptions are affected by

top-down high level factors from the lexicon. Top-down effects were found to play a

role across multiple linguistic levels of an utterance – segments, syllables, and words.

These factors include the segmental frequency, syllable constituencies and syllable

63



positions, stress, word frequency and the conditional probabilities of words given

other words in utterances. The findings suggest that naturalistic misperceptions are

affected by high level factors. Many of these factors were not possible to identify

in experimental misperception studies that focus on nonsense CV and VC syllables,

thus highlighting the need for examining larger units than nonsense syllables.

Finally, Chapter 5 discusses the limitations of the thesis across the levels of

segments, syllables and words and also perspectives for future work with a focus

on the individual analyses in Chapter 3 and 4. Potential solutions are suggested,

such as by doing context-sensitive analyses using the naturalistic corpus, conducting

laboratory experiments and creating a computational model that incorporates the

bottom-up and top-down effects found in misperception.
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Chapter 2

Corpus compilation

This chapter documents the core data that are used in this thesis. The subsequent

chapters in the thesis contain analyses that are based on these core data; therefore,

close attention was paid to how the data was processed as well as the reasoning

and assumptions that were made in the process. Given that arbitrary decisions

have to be made when processing the data, the extensive documentation that is

provided in this chapter will allow future researchers to more accurately replicate

the findings that were made using this data, and to question the assumptions in-

volved. Researchers can then make precise modifications and the resultant findings

can be compared with each other. Crucially, such comparisons could inform us of the

validity/appropriateness of specific modifications and the robustness of the findings.

This chapter is broken down into five sections and structured as follows: Sec-

tion 2.1 will document the naturalistic English misperception corpora, detailing the

backgrounds and formats of the existing corpora, as well as the steps that I took

to compile them into a single mega-corpus. Section 2.2 will document the phonetic

transcription that was performed on the mega-corpus, detailing the transcription

heuristics that I adhered to, my source of pronunciation (the choice of pronuncia-

tion dictionaries), the broadness of transcriptions (e.g. stress and allophones), the
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syllabification method, the dialect classification system based on geographical in-

formation, and finally the vowel sets for 14 dialects of English. Section 2.3 will

document the compilation and the processing of the mega written text corpus that

was used as a control corpus from which psycholinguistic variables (such as token

frequencies, neighbourhood density and others) were derived. Having established

the compilation and processing of the misperception corpora and the control corpus,

I will switch the focus to how the phonetic transcriptions from the misperception

corpora can be used to detect misperception. Section 2.4 will document a standard

approach for detecting differences between transcriptions, which is commonly called

pairwise alignment (Durbin et al., 1998), starting with a review of some of the exist-

ing alignment methods and finishing with an adapted version of an existing method

that I will use for the alignments in this thesis. Finally, Section 2.5 will summarise

the contribution that this chapter has made to the field of linguistics.

2.1 English naturalistic corpora

Only five naturalistic speech misperception corpora of English exist. There are many

advantages of compiling all five corpora into one mega corpus. Different corpora

have been collected by different individuals in different parts of the English-speaking

world (predominantly the US and the UK). Any agreement between the analyses

using different corpora would provide support for the results not simply being a

product of the following factors.

a) Geographical differences: the collectors involved in each corpus are located in

different places.

b) Collectors’ bias: since the researchers themselves are often also the collectors,

they might be inadvertently biased to collect/detect particularly kinds of mis-

perception that are related to their research question.
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c) Small sample size: small samples are less likely to be representative of the

population. They are also limited to low-power statistical techniques, such as

the chi-squared test.

Similarly any disagreement between findings in different corpora would open up areas

of further research thus allowing us to triangulate our findings derived from each of

the corpora (Browman, 1978, Ch. 2). In this section, these six corpora will each

be documented in turn below, in terms of the means of collection, the inclusion of

any meta-data (such as demographics of the interlocutors), any categorisation of the

corpus, and other corpus-specific details.

2.1.1 Background

2.1.1.1 Browman

Browman (1978) collected 222 naturally occurring hearing errors from spontaneous

casual English conversation. The details of the collection process, the data structure

of the published corpus and the meta-data are described below.

2.1.1.1.1 Collection process The collectors were the author and her friends

in Los Angeles, as well as three other linguists, Zinny Bond and Sara Garnes in

Columbus, Ohio, and Stefanie Shattuck-Hufnagel in Boston, Massachusetts. The

interlocutors (utterers and perceivers) were academics.

2.1.1.1.2 Data structure The published corpus was provided in two tables in

the appendix of the paper; see Figure 2.1 for a snapshot of the corpus.

2.1.1.1.2.1 Orthographic transcriptions In the first published table (see

Figure 2.1a), the full utterance was reported in orthographic form, including portions

that were not correctly perceived, with the erroneous portion of the utterance isolated
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between slashes. If there were no slashes in the intended utterance, this meant

that there was no correctly perceived portion in that utterance. The perceived

utterance includes only the erroneous portion, since the full perceived utterance can

be reconstructed from the intended utterance. If the correctly perceived portion

is identical for two consecutive data points, the correctly perceived portion of the

second data point is indicated with “[ditto]”.

(a) Orthographic transcriptions

(b) Phonetic transcriptions

Figure 2.1: Browman’s (1978) corpus: intended utterance (left) and perceived utter-
ance (right) (please note that these are the original transcriptions in Browman’s (1978)
corpus and not the transcriptions in the combined corpus)

2.1.1.1.2.2 Phonetic transcriptions In the second published table (see Fig-

ure 2.1b), the phonetic transcriptions of the erroneous portion were listed in APRA-

bet, a transcription coding scheme using ASCII characters, developed by the Ad-

vanced Research Projects Agency (ARPA). This means the correctly perceived por-

tions of the utterances were not phonetically transcribed. Finally, a table of the

IPA–ARPAbet mapping was also published; see Figure 2.2.

There was no mention of when the phonetic transcriptions were made. It is not
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possible to know if the transcriptions were done contemporaneously by the collectors

– immediately after the misperception was realised – or if they were done much later.

The author did not report if the transcriptions were transcribed to a particular accent

or not. However, judging from the IPA–APRAbet mapping, it is reasonably clear

that the transcriptions were done on a broad level, but since the mapping included

cases of taps and glottal stops, the transcriptions were not so broad that they were

phonemic. Since only one set of vowels were listed, it is reasonably clear that the

transcribers did not take into account accent variations, because otherwise there

would have been one set of vowels per accent group.

2.1.1.1.2.3 Meta-data No mentioned of meta-data, such as the demograph-

ics of the utterers and perceivers, was included. The author had already passed away

at the at the time of writing this thesis and I was therefore unable to follow up on

any meta-data for each reported hearing error.

2.1.1.2 Bird

Bird (1998) collected 300 naturally occurring hearing errors from natural English

conversation. The details of the collection process, the data structure of the published

corpus and the meta-data are described below.

2.1.1.2.1 Collection process No information about the collectors was men-

tioned; therefore, information about where the collectors were from, and how many

collectors were involved is unknown. The author reported that for each instance of

misperception, the intended and perceived utterances were first transcribed ortho-

graphically, and then other factors were noted such as noise, context, regional accent

and world knowledge of the listener etc.
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Figure 2.2: IPA–ARPAbet mapping for Browman’s (1978) corpus

2.1.1.2.2 Data structure The published corpus was in the format of a list in

the appendix of the paper; see Figure 2.3 for a snapshot of the corpus.

2.1.1.2.2.1 Orthographic transcriptions The author published the in-

tended and perceived utterances in orthographic form. In the list, for each data

point the intended utterance comes first, and the perceived utterance comes second.

The full utterances were listed, including both correctly and incorrectly perceived

portions.
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Figure 2.3: Bird’s (1998) corpus: orthographic transcriptions (please note that these
are the original transcriptions in Bird’s (1998) corpus and not the transcriptions in the
combined corpus)

2.1.1.2.2.2 Phonetic transcriptions The author did not publish any pho-

netic transcriptions in the appendix. No details were provided for how the transcrip-

tions were done. The author referred to the segments of analyses as phonemes, and

we can therefore could assume that the transcriptions were phonemic.

2.1.1.2.2.3 Meta-data The author did not publish any meta-data, such as

noise, context, regional accent and world knowledge of the listener.

2.1.1.3 Labov

Labov (2010b) collected ≈ 870 naturally occurring misperceptions in English. The

details of the collection process, the data structure of the published corpus and

the meta-data are described below. The author used the term misunderstandings,

instead of misperception. For consistency purposes, I will refer to them as misper-

ceptions throughout.

2.1.1.3.1 Collection process The collection was part of a project on Cross

Dialectal Comprehension. The collectors were linguists and linguistic students, and
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they were asked to note down any instances of misperception on a pad of printed

collection cards. Figure 2.4 shows a collection card that was used.

The collection process covered 16 years between 1984 to 2000. The majority of

the misperceptions (≈ 60%) were collected between 1986 to 1988; fewer than 60

misperceptions were collected in each of the remaining twelve years. During 1986–

1988, frequent reminders were sent to the collectors to encourage them to collect,

and this yielded on average two to four instances per week per collector.

There were nine collectors who were linguists with phonetic training, and were

belonged to the following places: Long Island City, Montreal, Northern New Jersey,

Connecticut, Chicago, California, Edmonton, and New York City. These linguists

provided the majority of the corpus (76%). The author mentioned that they made

every effort to avoid collection bias that would favour the collection/detection of

dialectally-motivated instances. The author argued that the period during which a

majority of the instances was collected would be less biased than the years when

fewer misperceptions were collected.

Figure 2.4: Labov’s (2010) corpus: collection card

2.1.1.3.2 Data structure The collection cards (Figure 2.4) created a basis for

the data structure of corpus. The cards encouraged the collectors to complete the

information asked for, as well as making the collection process more amiable. Al-

though the corpus was not published, Professor William Labov has kindly provided
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Professor Andrew Nevins and me with the corpus for research purposes.

The corpus was encoded in FileMaker format. It was converted into an excel

spreadsheet for simpler data extraction and viewing. The content of the corpus is

discussed below.

2.1.1.3.2.1 Orthographic transcriptions Figure 2.5 shows an example of

the spreadsheet. The orthographic transcriptions shown in the first column were

tabulated in a specific format. The identity of the speaker is indicated before the

intended utterance and separated by a colon. The symbols “=>” appearing before

the perceived utterance are used to indicate “heard as”. The perceived utterance

follows a similar format as the intended utterance with the identity of the perceiver

listed before the utterance. Notes about the instance itself are enclosed by square

brackets “[]”.

Figure 2.5: Labov’s (2010) corpus: orthographic and phonetic transcriptions (please
note that these are the original transcriptions in Labov’s (2010) corpus and not the
transcriptions in the combined corpus)

2.1.1.3.2.2 Phonetic transcriptions Figure 2.5 shows an example of the

spreadsheet. The broad phonemic transcriptions are shown in the second column.

The transcription notation followed Labov’s own system and was written in ASCII

rather than IPA or SAMPA. Only the phonemes that were different between the
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intended utterance and the perceived utterance were transcribed. The intended and

perceived phonemes were separated by a slash. It was not documented whether the

transcriptions were done contemporaneously or later prior to submission. While later

transcriptions could lower the level of accuracy, any possible reduction in accuracy

may have been lessened by the broader, phonemic nature of the transcriptions.

2.1.1.3.2.3 Meta-data The meta-data in the corpus are richer than those in

Browman’s (1978), Bird’s (1998), and Bond’s (1999) corpora. Figure 2.6 shows an

example of the meta-data section of the spreadsheet.

The only information provided about the utterers and perceivers was their place

of origin. For US places, abbreviations were used to indicate the names of the states.

Other demographics, such as age and gender, were not explicitly specified, but the

names of the collectors were reported and the exact date, month and year when each

instance occurred was available. The corpus contains temporal information about

how many seconds after the spoken utterance was perceived before the perceiver

noticed that he/she misperceived the utterance.

Figure 2.6: Labov’s (2010) corpus: meta-data

2.1.1.4 Bond

Bond (1999) collected ≈ 900 hearing errors from ordinary conversational speech. The

details of the collection process, the data structure of the published corpus and the

meta-data are described below.
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2.1.1.4.1 Collection process The author herself was either the utterer, the

perceiver, or the observer for some of the errors. A sizable portion of the corpus

consisted of errors reported by students, friends and colleagues of the author. Unlike

other naturalistic corpora, this corpus has a subcorpus of 105 misperception instances

by children. However, the majority of the corpus, 783 instances, was provided by

adults. The authors mentioned that the instances were collected over the course of

many years. The first mention of the corpus was in an earlier paper, Garnes and

Bond (1980). This paper stated that the corpus contained around 900 instances

which is consistent with the figure reported by Bond (1999); therefore, we can infer

that the collection process stopped before 1980, and the collection is likely to have

started several years before then.

The vast majority of the collected instances occurred during face-to-face con-

versations. The exact background details of each instance varied considerably, and

included anything from being in a car to ordering food in a restaurant. 2% of the

corpus consisted of telephone conversations and 5% consisted of cases where the

speakers were not addressing the listeners directly, such as via television and radio.

Demographics such as the accent of the utterers and perceivers were rarely available,

especially when the reporter did not know the interlocutors that were involved in

misperceptions.

2.1.1.4.2 Data structure The published corpus was in the format of a list in

the appendix of Bond (1999); see Figure 2.7 for an example of the corpus.

2.1.1.4.2.1 Orthographic transcriptions The author published the in-

tended and perceived utterances in orthographic form. For each data point in the list,

the intended utterance was listed first, followed by an arrow, and then the perceived

utterance was listed. The intended utterance was listed in its full form (including

both correctly and incorrectly perceived portions), while only the incorrectly misper-
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ceived portion was listed for the perceived utterance. However, it is obvious in almost

all of the cases that the full form of the perceived utterance can be reconstructed

from the full form of the intended utterance.

Figure 2.7: Bond’s (1999) corpus: orthographic transcriptions (please note that these
are the original transcriptions in Bond’s (1999) corpus and not the transcriptions in
the combined corpus)

2.1.1.4.2.2 Phonetic transcriptions The author did not publish any pho-

netic transcriptions in the appendix. The author stated that accurate phonetic rep-

resentation of the speakers’ utterances was not available, which implies that the tran-

scription was not done contemporaneously. The transcriptions used by the author

were essentially phonemic, or in the author’s description, “a distinct pronunciation”.

The author argued that this best captures the utterer’s intent, even with words that

are often reduced such as and, and the full form /ænd/ would still be used in the

transcription. The drawback is that the transcription might therefore be less realistic

and more arbitrary. Furthermore, by assuming that the phonemic forms were used,

the perceivers would have to bear more “responsibility” for the misperception, which

might be overestimated, because it is possible that some of misperceptions were due

to pronunciations that were reduced.
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2.1.1.4.2.3 Meta-data The author did not publish any meta-data. As men-

tioned previously, the demographics of the utterers and perceivers were rarely avail-

able, so little was available to publish.

2.1.1.5 Nevins

Prof. Andrew Nevins collected ≈ 2,900 instances of misperceptions from conversa-

tional English speech. The details of the collection process, the data structure of the

published corpus and the meta-data are described below.

2.1.1.5.1 Collection process Prof. Nevins recruited 24 linguistics students

who were attending a course on speech misperception at Harvard University for

one semester (14 weeks) per year in 2009 and 2010.

Over the 14 weeks, they were made aware of various kinds of misperception errors

using Bond (1999) and other papers as course materials, starting from phonetic

factors through to pragmatic factors. The students were instructed to report 5-10

misperception instances in their ordinary daily life per week. Some of the errors

contributed by the students were analysed in each class. Specifically, they were

instructed to record the intended and the perceived utterances in orthographic form,

and if possible, provide phonetic transcriptions, the demographics of the utterers and

perceivers (such as the age, gender, accent, native and non-native language(s) and

hometowns), the context of each misperception, and any comments or corrections by

interlocutors. At the end of the two years this collection yielded 2,857 instances of

misperceptions of mostly American English speech, of which 1,523 instances were in

2009, and 1,334 instances were in 2010.

2.1.1.5.2 Data structure The corpus was made available to myself in an excel

spreadsheet format by Professor Nevins. The content of the corpus is discussed

below.
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2.1.1.5.2.1 Orthographic transcriptions Figure 2.8 shows an example of

the spreadsheet. The orthographic transcriptions are shown in the first two columns.

The intended and perceived utterances were listed in two separate columns in their

full form.

Figure 2.8: Nevins’s corpus: orthographic and phonetic transcriptions (please note
that these are the original transcriptions in Nevins’s corpus and not the transcriptions
in the combined corpus)

2.1.1.5.2.2 Phonetic transcriptions Figure 2.8 shows an example of the

spreadsheet. The phonetic transcriptions are shown in the third and fourth column

but the transcriptions were not always available and only the misperceived portions

of the utterances are transcribed in most cases. Collectors transcribed in IPA, but

there was a considerable amount of notational variations; for instance, [@]-[2], [E]-

[e], [eI]-[ej] and stress marks were not always provided. There are no indications

of whether the perceived utterance was transcribed with the perceiver’s accent or

the utterer’s accent (see Section 2.2.5 for why this is relevant); the students were

simply told to transcribe the utterances in IPA, without specific instructions about

whose accent to transcribe. Finally, the instructions to the students did not indicate

whether the transcription should be done contemporaneously or immediately after
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the misperception instances, so it is possible that the transcriptions were done much

later, which would have lowered the accuracy of the transcriptions.

2.1.1.5.2.3 Meta-data The meta-data in the corpus are detailed compared

to the other corpora. Figure 2.9 shows an example of the meta-data section of the

spreadsheet.

The meta-data includes the utterers’ and perceivers’ locations, genders and ages.

The level of detail varies, e.g. with the details ranging for location from giving the

exact states from which the interlocutors came, to just simply stating the country.

The location in which each instance took place along with some descriptions of

the locations were also documented under the column “Where”, e.g. Room, a few

girls talking, Weld Laundry Room. Multiple washers and dryers running. The names

of the collectors were also noted, just the first name in most cases.

If a particular instance was from misheard lyrics (also called mondegreens), rather

than conversational speech, this would be indicated under the column “Notes”. For

mondegreens, the name of the utterer and the song would both be specified in the

demographics of the utterers, e.g. Lil Wayne, “Lollipop”.

The topic of conversation was also reported, e.g. Meeting each other for the

first time. Getting to know each other. Lastly, any requests for clarifications by the

perceivers were also reported, e.g. Wait! What did you say?.

2.1.2 Compilation

The existing corpora were summarised above. The following sections will describe

how all five corpora were compiled into one mega corpus to cover the orthographic

transcriptions, the phonetic transcriptions and the meta-data. Due to the high

level of variability between corpora, one of the most difficult tasks was to normalise

their format, and to extract as much as useful information as possible while making
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Figure 2.9: Nevins’s corpus: meta-data

reasonably justifiable assumptions.

2.1.2.1 Orthographic transcriptions

Any normalisation of the orthographic transcriptions in the misperception corpus

needs to be consistently applied to a written English corpus which is used as a

representative corpus of English. This written English corpus acts as a “control”,

and it is used to estimate psycholinguistic lexical variables, such as token frequencies

(Brysbaert and New, 2009), and information content with language modelling (Chen

and Goodman, 1999). The compilation of this written corpus will be described

in Section 2.3. For the purpose of devising the normalisation of the orthographic

transcriptions, the normalisations need to be scalable to a large written English

corpus, meaning that they have to be fully automated and do not require manual

corrections.
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2.1.2.1.1 Capitalisation Orthographic words in English are capitalised at the

beginning of each sentence (e.g. This is my name), at the beginning of proper

names (e.g. Kevin), in acronyms (e.g. HSBC ) as well as at the beginning of certain

pronouns (e.g. I ).

2.1.2.1.1.1 Misperception corpora In the misperception corpora, it is not

always clear if the reported utterances are full sentences or just part of a sentence. If

they are full sentences, then the first word should be capitalised according to English

orthographic conventions. If they are not full sentences but part of a sentence,

then the capitalisation of the first word is incorrectly assigned. In some instances,

the reported orthographic transcriptions simply have one word. This may be due

to a reporting bias, since the collectors (or those who noticed the occurrence of

a misperception) might only remember the most noticeable difference between the

intended utterance and the perceived utterance.

2.1.2.1.1.2 Written language corpus A written corpus was selected to

serve as a “control” for subsequent analyses of the misperception corpus. This cor-

pus also requires normalisation of its orthography like with the misperception corpus.

The corpus consists of TV and film subtitle texts. The reason for selecting such a

corpus will be documented later in Section 2.3. Like the misperception corpus, the

controlled written corpus also suffers from inconsistent capitalisation. Firstly, the

writers of the texts could create these capitalisation inconsistencies. Secondly, line

breaks that do not indicate the start of a new sentence could be another cause. These

kinds of line breaks are often used in subtitle texts since there is a space limit to

how much text can be fitted on the screen and the first word in the portion of the

text after the break is sometimes incorrectly capitalised. Thirdly, headings and titles

are sometimes capitalised inconsistently, with variations including capitalising every

single word, every letter in every word, the first word, or all words except those with
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three or fewer letters.

These inconsistent capitalisations can cause natural-language-processing tools,

such as Part-Of-Speech taggers, to yield poorer and more inconsistent performances

(Halteren, 2000). When processing written texts, almost all natural language pro-

cessing tools have to first tokenise the texts, i.e. identify words, with the capitalised

and lower-case versions of a word treated as two distinct words. While there are

cases where the two forms are indeed distinct, (e.g. Don – a proper name vs. don –

a verb meaning to put on a item of clothing), more often the two forms are not in fact

distinct lexical items but simply an error caused by conventions of capitalisation.

Even if the conventions of capitalisation are consistently applied, the capitalisa-

tion can still be a poor cue for whether a capitalised form is indeed a distinct lexical

item from the lowercase form. This is apparent if we just consider the capitalisation

of the first word in an utterance. There is no reason to believe that the forms “This”

and “this” are two distinct lexical items, purely because the first form is found in

a sentence initial position. If we were to treat capitalised and lowercased forms as

distinct words then the size of the lexicon would be likely to double, since almost all

words can be placed in a sentence initial position.

In sum, the treatment of capitalisation will influence the process of tokenisation.

This will have an impact on any estimates derived from the control written corpus,

since, for instance, this will affect the quality of the estimated token frequencies,

since the count of a word would be “shared” between the two forms (capitalised and

lowercased).

2.1.2.1.1.3 Normalisation by lowercasing Having discussed the issues of

capitalisation in orthographic transcriptions, it is clear that there is a need for a

solution. In this thesis, I will take a pragmatic approach to solving this issue, which is

to simply make all orthographic words entirely lowercase. This will be applied to both

the misperception corpus and the control written corpus. It is important to apply
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the same treatment to both sets of corpora, since the lexical properties extracted

from the control written corpus will be used in the analyses of the misperception

corpora.

There are drawbacks to this approach, such as the distinctions that will be lost

for lexical items that are distinguishable by their capitalisation (e.g. Don and don)

and this approach will affect the identification of proper names, but this drawback

could be mediated by using a Part-Of-Speech tagger and a Named-Entity Recog-

nition tagger (Finkel, Grenager, and Manning, 2005) that are case-insensitive to

identify proper names. However, neither of these taggers were used to enrich the

corpora in this thesis, and this also means that I did not investigate the process of

speech perception of proper names. Studies on proper names have shown that they

are perceived differently from non-proper names such as content or function words

(Valentine, Brennen, and Brédart, 1996), including in the retrieval process. Specif-

ically, naturalistic and experimental studies on tip-of-the-tongue phenomenon have

suggested that people are more likely to have retrieval difficulties with proper names

than non-proper names (Valentine, Brennen, and Brédart, 1996, Ch. 5). Further-

more, the recognition of proper names has been shown to be related to memory of

known individuals, and moreover the token frequency effect (more frequent words are

processed faster) will only hold for proper names if the experimental task does not

require access to memory of a known individual (Valentine, Brennen, and Brédart,

1996, Ch. 4). In sum, there is clear evidence that proper names are processed differ-

ently than non-proper names. Proper names are not tagged in the written corpus,

but proper names are tagged manually in the misperception corpus.

Future work should be done to enrich both the misperception corpus and the

control written corpus by tagging them with Part-of-Speech tags. In addition, the

proper names in the misperception corpus should be further tagged with information

regarding whether the processing of the proper name in each instance is likely to
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require memory of a known individual by using meta-data in the corpus.

2.1.2.1.2 Punctuation marks This section examines the treatment of punctu-

ation marks in the orthographic transcriptions, specifically full stops, apostrophes

and hyphens, since they have an impact on the tokenisation process as discussed in

the Capitalisation section.

2.1.2.1.2.1 Full stops Full stops are used to denote the end of a sentence, in

ellipses (typically three full stops), separating the letters in initialisms (e.g. U.S.A.)

and after abbreviations (e.g. etc.).

To normalise the use of full stops in the orthographic transcriptions, a simple

treatment would be to replace them with spaces. However, special treatments are

needed when full stops are used within an initialism. There are three possible options.

The first option would be to not leave full stops within initialisms, e.g. U.S.A. would

therefore be unchanged. The second option would be to replace them with spaces,

such that the letters in the initialisms are treated as three orthographic words, e.g.

U.S.A. would therefore become U S A. The third option would to be remove them,

e.g. U.S.A. would become USA.

The first option may lead to potential issues with the consistency of using full

stops in acronyms. For instance, the Massachusetts Institute of Technology is often

represented through the three-letter acronym consisting of the letters, M, I and T,

and it could be written as M.I.T. or MIT. While it is possible to manually check

for inconsistencies in the misperception corpus, this is not possible for the control

written corpus due to its size.

The second option may lead to potential problems with the identity of the

acronym. By replacing the full stops with spaces, multiple words would be cre-

ated from each acronym. If an initialism was treated as multiple words, then the

identity of such acronyms would no longer be encoded.
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The third option may lead to issues with creating mergers with non-acronyms. It

is possible that by removing the full stops, together with ignoring cases (as mentioned

in the Capitalisation section), homographs could be created. For instance, Phase

Impenetrability Condition has the initialism P.I.C ; after the treatment of removing

the full stops and lowercasing, it would become pic which is a word for picture.

I have opted for the third option, which is to remove the full stops within ini-

tialisms. The reason is that the chances of creating homographs are low because

they are restricted to initialisms that have legal English orthotactics. Furthermore,

the third option is likely to ensure greater consistency than the third option.

In sum, full stops will be replaced by spaces if they are adjacent to at least one

non-space unit or a line break, e.g. “My name is John. My name is John . My name

is John.” would become “My name is John My name is John My name is John ”. All

other full stops will be removed (without replacement), e.g. “U.S.A.” will become

“USA”.

2.1.2.1.2.2 Apostrophes Apostrophes are primarily used for contractions

(e.g. can’t – cannot), possession (e.g. the dog’s bone), single quotation marks (e.g.

‘apple’) as well as denoting an alternative pronunciation (e.g. rappin’ – which is the

word rapping with alveolarisation of -ing) (for an extensive discussion on the use of

apostrophes, Quirk et al. (1985)).

The use of apostrophes for possession is particularly variable after a noun ending

with an orthographic “s”. The standard convention is to have the apostrophe before

the “s” if the noun is singular (e.g. the dog’s bone), but after the “s” if the noun is

plural (e.g. the dogs’ bones). When it comes to proper names that ends of an “s”,

there are more variations between writers. If the noun is plural, then the convention

is to first pluralise the proper name (e.g. Jones would become Joneses), before

appending an apostrophe (e.g. Joneses’ house). If the noun is singular, then the

convention is to append an apostrophe followed by an “s” (e.g. Jones’s house).
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However, these conventions are often broken in various ways: 1) missing apostrophes

(e.g. the dogs bone for the dog’s bone or the dogs’ bone), putting an apostrophe

before the “s” for a plural noun (e.g. the dog’s bone for the dogs’ bone), putting

an apostrophe after the “s” for a singular noun (e.g. the dogs’ bone for the dog’s

bone), adding an additional “s” for pluralised proper names (e.g. Joneses’s house for

Joneses’ house) and many others (Hook, 1999).

Given the variations in the use of apostrophes, it is apparent that some kind

of normalisation is needed. The first option is to remove any apostrophes that are

between a) two space characters, or b) one space character and a line break and

c) two line breaks. The first option is the most conservative and effectively only

removes apostrophes that are adjacent to spaces/line breaks. This option relies on

the assumption that the level of inconsistency is low in the misperception corpus and

the control written corpus and does not remove the apostrophes that are functioning

as single quotation marks.

The second option is similar to the first option, but in additional it uses reg-

ular expressions to remove pairs of single quotation marks. Concretely, a regular

expression removes occurrences of two consecutive apostrophes such that the first

apostrophe appears after a space or a line break and before a non-space character,

and the second apostrophe appears after a non-space character and before a space/a

line break. This option is problematic when applied to the control written corpus,

which contains a large amount of typographical errors. For example if the first quo-

tation mark is a double quotation mark and the second quotation mark is a single

quotation mark (an apostrophe), then the regular expression will fail, and if the

word before the second quotation mark is a noun that ends with an “s”, then the

second quotation mark will therefore indicate that that noun is a plural noun with

an apostrophe denoting possession. Another way for the regular expression to fail is

an accidental insertion of an apostrophe before a word; for instance, ’Kevin has the
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dogs’ bones. where the first apostrophe is simply a typographical error. Just like the

first option, this option relies on the assumption that the number of inconsistencies

in the misperception corpus and the control written corpus is low, but this is unlikely

to be true. In one study on written errors by college students (Haswell, 1988), the

error rate for possessives was as high as 50 percent.

The third option is to keep any apostrophes that are between two non-space

characters, with all other apostrophes removed or replaced by spaces. This option

would remove the apostrophes in cases where the apostrophes come after the “s”, e.g.

the dogs’ bone would become the dogs bone as well as the single quotation marks,

but keep them when they are placed before the “s” and after a noun (e.g. the dog’s

bone). The drawback of this option is that the denoting of possession is maintained

for singular nouns but not for plural nouns.

The fourth option is to keep any apostrophes that are a) between two non-space

characters, or b) after an “s” and before a space or a line break. All other apostrophes

are removed or replaced by spaces. This option would keep the apostrophes in cases

where the apostrophes come after the “s”, e.g. the dogs’ bone. But it would also

accidentally keep the single quotation marks that are placed after a word ending

with an “s”, e.g. ‘apples’ would become apples’. While this option retains possession

for both singular and plural nouns (unlike the third option), it over-generates the

number of possessive plural nouns.

Having briefly discussed the possible options, it is clear they each bring their own

problems. I opted for the third option in this thesis. This option has the drawback

of maintaining the possession for singular nouns but not plural nouns. The main

implication of this for subsequent analyses is that the distinction between a plural

noun and a possessive plural noun is ignored, but given that none of the corpora will

be part-of-speech tagged nor will syntactic aspects of misperception be considered in

this thesis, the loss of this distinction is not expected to be problematic. Regarding
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pronunciation, the two forms are in fact identical, with the exceptions of proper

names ending in “s”.

2.1.2.1.2.3 Hyphens One of the uses of hyphens in orthographic transcrip-

tions is to indicate compounds, e.g. bell-tower. The issue here is how the hyphens

should be treated – should they be kept, removed or replaced with spaces?

There is individual variability in the use of hyphens (Kuperman and Bertram,

2013). In this paper, the authors analysed three-way alternations of orthographic

choices for two-constituent compounds – concatenated (e.g. belltower), spaced (e.g.

bell tower) and hyphenated (e.g. bell-tower) variants. Using both diachronic and syn-

chronic data (from behavourial tasks), they suggested that the orthographic choice

is a function of orthographic, statistical, and semantic properties of the compounds’

constituents. The concatenated form is taken to be lexicalised. The authors explored

the precise nature of the route of lexicalisation, and found that the majority of the

alternating compounds only consisted of the spaced and hyphenated forms, or only

the spaced and concatenated forms. A substantial number of compounds consist

of all three forms, and those that consist of only the hyphenated and concatenated

forms are relatively rare.

Together, these distributional patterns suggest that the hyphenated forms and the

concatenated forms co-occur only when the spaced forms are present, and that the

alternations occur exclusively between the spaced forms and the two other forms,

without the intermediate stage where the spaced forms are lexicalised via the hy-

phenated forms. The route of lexicalisation seems to suggest the hyphenated forms

pattern with the concatenated forms, such that they are both single lexical units, sup-

porting the decision that the hyphens should be removed, and that the hyphenated

words should become concatenated.

However, considering only the alternating compounds that consist of all three

forms, the route of lexicalisation appears to be different, such that the hyphenated
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forms (being the least frequent) are firstly changed to the spaced forms, which in turn

are changed to the concatenated forms. This route of lexicalisation conflicts with the

aforementioned one, and therefore it casts doubt on the patterning of hyphenated

forms and concatenated forms.

A different study by van Heuven et al. (2014) also faced with this issue of the

treatment of hyphens in their complication of a word frequency corpus, SUBTLEX–

UK, and specifically whether the hyphen should be removed or not – and they did

not consider the concatenated form. In this study, they based their decision on be-

havourial data from the British Lexicon Project (Keuleers et al., 2012) which consist

of 28 thousand lexical decision times. They correlated the lexical decision times

with either the token frequencies of the dehyphenated forms (bi-gram frequencies)

or those of the hyphenated forms. They found that the frequencies of dehyphenated

forms captured significantly more variance in the data (5% more) than those of the

hyphenated forms. Based on this result, they decided to replace the hyphens with

spaces in their corpus.

Considering the conclusions one could draw from both studies, it seems the distri-

butional patterning between the hyphenated forms and concatenated forms cannot

provide substantial support that the two are treated as one and the same. In fact,

behavourial data suggests that, at least in terms of the effect of token frequency on

visual word recognition, the hyphenated forms should be treated as the spaced forms.

Therefore for this thesis, I opted for the dehyphenation option, where hyphens are

replaced with spaces.

2.1.2.1.3 Abbreviations Another common step in text normalisation is to ex-

pand numeric and symbolic abbreviations. By numeric abbreviations, I mean num-

bers that are written in digits as opposed to in alphabetic letters; for instance, 200

can be expanded into two hundred. By symbolic abbreviations, I mean signs such

as dollars and pounds; for instance, $200 can be expanded into two hundred dollars.

89



Other title abbreviations such as Mr. and Dr. can be expanded into Mister and

Doctor.

This process of expansion is useful for normalisation across texts, because some-

times these abbreviations are already expanded, so normalisation will ensure consis-

tency. It can better reflect the number of spoken/perceived words, and furthermore

it can yield a better correspondence between the word order in the orthographic

transcriptions and the word order in the phonetic transcriptions, especially in cases

of symbolic abbreviations where the currency signs are often spoken last, e.g. $200

is pronounced astwo hundred dollars, not dollars two hundred.

This is in fact a non-trival task and is extremely challenging. For instance, the

way numeric abbreviations are spoken can vary – years (e.g. in 1999) are often spoken

differently from non-year contexts (e.g. 1999 cows). For an extensive overview for

this text normalisation problem, see Sproat et al. (2001).

Due to the complexity of the problem, I employed an existing toolkit, nsw expand,

which is part of the text normalization tools for the Festival speech synthesis system

(Black, Sproat, and Chen, 2000). The tool has four domain models, each of which

is particularly suitable for a specific genre of texts. The four domains are news,

classified ads, an email-like technical mailing list and recipes. I chose the default

model, news, for this thesis. This decision was made based on small scale testing

with both the misperception corpus and the control written corpus and I found that

the news model yielded better results. The output for the misperception corpus

would be checked manually, while the output for the control written corpus would

not be checked manually due to the size.

2.1.2.2 Phonetic transcriptions

Of the five corpora, two lack any phonetic transcriptions – they are the Bond’s

(1999) corpus and Bird’s (1998) corpus. The remaining three corpora have reported
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phonetic transcriptions that vary in multiple ways.

Firstly, the transcriptions differ in how broad/narrow they are, with Nevins’s

corpus being the most narrow, while Labov’s (2010) and Browman’s (1978) are

more phonemic. Secondly, the amount of transcriptions also varies: in Labov’s

(2010) corpus, only the misperceived phones were transcribed; in Browman’s (1978)

corpus, only the words that were misperceived (intended and perceived words) were

transcribed; in Nevins’s corpus, some instances have the whole utterance transcribed,

including the correctly perceived portions. Thirdly, the transcription system used

by each corpus also varies – Nevins: IPA, Labov, 2010b: own system and Browman,

1978: ARPAbet (with IPA mapping information). Fourthly, the transcription details

within each corpus can also differ. This is apparent in Nevins’s corpus, because

the collectors numbered around 20–30 each year (for two years) and more collectors

typically lead to more inter-transcriber variations, e.g. the r-coloured NURSE vowel

was transcribed in multiple ways – Ä, 3~, @ô and 3ô.

Given the high within and across corpus variation, it is clear that the combined

corpus needed to be re-transcribed using one transcription system with the same level

of phonetic detail. The original transcriptions can be used as a guide, especially in

cases when there could be multiple ways of transcribing a particular word, due to

factors such as vowel reduction, homographs, rhoticity and others. Furthermore, the

transcriptions would be richer if they are able to reflect the rich dialectal information

we have, rather than simply being transcribed phonemically. In the following section,

I will describe how the dialectal information was used and the assumptions made in

instances where the dialectal information is missing or simply not available during

the collection. The precise details of the phonetic transcriptions can be found in

Section 2.2.

2.1.2.2.1 Accent classification
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2.1.2.2.1.1 Browman We do not know the exact accent/dialect background

of the interlocutors for each misperception instance in the corpus. However, since

we know that the collectors were from Los Angeles, Columbus Ohio, and Boston,

Massachusetts, the assumption is being made that the utterers and perceivers are

speakers of American English. In terms of accent groups (see Table 2.5 for a clas-

sification of major regional speech areas in America), Los Angeles and Ohio are

classified as General American, while Massachusetts is classified as New England.

Given that the published corpus did not indicate which data points were collected

by which team of collectors, it is not possible to estimate the accent group precisely.

For the purpose of this thesis, I will assume that the utterers and perceivers had a

General American accent.

2.1.2.2.1.2 Bird Although the author did not publish any dialectal back-

ground of the interlocutors of each misperception, by observing the individual data

points, many British related words or proper names were provided. For instance,

Look North is likely to be referring to BBC Look North, a regional television channel

in Yorkshire, UK; Blakeney Place is a place in York, UK; Haworth is a village in

West Yorkshire, UK; 80p, which is a standard way of referring to 80 pence; Biggles

was a popular UK series of youth-oriented adventure books written by W. E. Johns;

Walmgate is a name used by establishments in York, UK (referring to Walmgate Bar

which is a medieval gateway to the city of York, UK) and many others. Together with

the fact that the author was affiliated with the University of Newcastle at the time

when the paper was published, it is reasonably clear that the place names mentioned

above are indeed those in Yorkshire, also in Northern England, like Newcastle.

While it seems likely that the utterers and perceivers may have a Northern English

accent (given the multiple references to Northern England), for the purpose of this

thesis, I will assume the utterers and perceivers involved in the data have a Standard

Southern British English accent (see section 2.2.7.1). Given the widespread dialectal
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levelling amongst British accents (Kerswill, 2003), the dialectal difference between

Northern and Southern British English accents should not have a major impact on

the overall analyses. However, caution should be taken when interpreting the results,

especially with those involving North-South dialectal differences, such as the strut

vowel, which is well-known to be realised differently.

2.1.2.2.1.3 Labov Most of the misperceptions the corpus included informa-

tion about the utterers’ and perceivers’ places of origin. In cases where the informa-

tion was available, the accent groups are assigned to the interlocutors according my

classification system (see Table 2.5 for a classification of major regional speech areas

in America).

There are numerous cases where background information is missing (either known

but not reported or not available to the collectors). For the purpose of the thesis, I

will assume they have a General American accent.

2.1.2.2.1.4 Bond The accent/dialect backgrounds of the interlocutors were

not available. Although not explicitly mentioned, the corpus was most likely collected

in Ohio where the author was based. This means that the collectors, the author,

students, friends, and colleagues are most likely to be from Ohio or nearby in the

North Central region of United States.

In terms of accent groups (see Table 2.5 for a classification of major regional

speech areas in America), the North Central regions are classified as General Amer-

ican. For the purpose of this thesis, I will assume that the utterers and perceivers

in all the data points (except for a few data that were indicated to have a British

speaker) have a General American accent.

2.1.2.2.1.5 Nevins In this corpus, extensive information about the ac-

cent/dialect backgrounds of the interlocutors was available. Where the information
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was available, the accent groups are assigned to the interlocutors according my clas-

sification system (see Table 2.5 for a classification of major regional speech areas in

America). In cases where the background information is missing (either known but

not reported or not available to the collectors), I have assumed they have a General

American accent for the purpose of the thesis.

2.1.2.3 Meta-data

Having discussed how the orthographic and phonetic transcriptions were standard-

ised, we now examine more closely how the normalisation was approached with the

meta-data from the five corpora – specifically the geographic location, the age and

the gender of the interlocutors.

2.1.2.3.1 Geographic location Labov’s (2010) corpus and Nevins’s corpus both

contained geographic information about where the interlocutors were from. This in-

formation was used to identify the Country and State. The term State has been used

since the majority of the interlocutors were from USA. For interlocutors from other

countries, the equivalent regions are used instead e.g. the provinces of Canada.

2.1.2.3.2 Age Many instances from Nevins’s corpus include the exact age of the

interlocutor and these figures were used without further modifications. Sometimes

the reported age was not exact value, e.g. mid-thirties, 40 something and 50s. In

these fuzzy cases, I have simply take the middle value, e.g. 35, 45 and 55 for the

examples above respectively.

Labov’s (2010) corpus did not contain much age meta-data. However, there

were 14 recurring interlocutors, and many of whom were also collectors or academics

from the same universities as the collectors. The full name of the interlocutors was

often provided. Using their full names, I would look for their date-of-birth from any

information available on the internet, such as their CVs. If the date-of-birth was
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not available for a recurring interlocutor, I would use their graduation years from

their undergraduate degree, or doctorate degree as an estimate of the year of birth.

Furthermore, the corpus reported the date of occurrence of each misperception. The

age of the recurring interlocutors at the time of each misperception was calculated

by using the year/date of birth and the date of occurrence of the misperception

instances.

2.1.2.3.3 Gender Many instances from Nevins’s corpus include the gender of

the interlocutors reported and this information was used directly. Although the

gender information of the interlocutors was not always specified explicitly, it could

also be derived from the names and the pronouns reported for each instance.

2.1.2.3.4 Slip type Using any meta-data provided across these corpora, I further

tagged each data point as being a Mondegreen (misheard lyrics) or not.

2.1.3 Combined Corpus

The outcome of the compilation of all the existing corpora is a combined corpus

with orthographic transcriptions, phonetic transcriptions and meta-data. Figure

2.10 shows a snapshot of the combined mega corpus.

2.1.4 Summary

This section began with details for the collection process, data structure, ortho-

graphic transcriptions, phonetic transcriptions and meta-data of the existing natu-

ralistic misperception corpora of English. I then proceeded to describe how I com-

piled these existing corpora into one mega corpus of misperception, focusing on the

normalisation of the orthographic transcriptions, phonetic transcriptions and meta-

data. Special attention was paid to the orthographic transcriptions to ensure the
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Figure 2.10: The combined corpus: orthographic and phonetic transcriptions and
meta data (many of which are not shown here)

normalisation process could be automated with greater ease, such that our “control”

corpus (a mega text corpus of English) can be processed consistently and be used in

conjunction with the misperception corpus in future analyses. The overall process

was documented. The following section, Section 2.2, will focus on the details of the

phonetic transcriptions.

2.2 English naturalistic corpora – phonetic transcrip-

tions

Transcription can be imprecise. Many have argued against the use of transcription

or similar symbolic representation of speech sounds for linguistic analyses (Kerswill

and Wright, 1990; Harrington, 2010). The arguments are often focused on the un-

reliability of auditory transcription even by trained phoneticians, the lack of fine-

grained phonetic detail and the inherent notational limits of transcription systems.

Concretely, Kerswill and Wright (1990) found that auditory transcriptions by pho-

neticians are unreliable when compared to articulatory data (electropalatography)

and inconsistent within transcribers. Furthermore, Harrington (2010, Ch. 1) argued

that “an auditory transcription is at best an essential initial hypothesis – never an
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objective measure”. While these arguments are well-founded, phonetic transcriptions

are the next best option in cases when there are no acoustic recordings, and transcrib-

ing from orthography is still possible and has widely been used in education (Wells,

1996), speech synthesis (Black et al., 2002), and linguistic analyses. Furthermore,

phonetic transcriptions have been used extensively by dialectologists and can capture

phonetic details that are well reflected in acoustic signals (Wieling, Margaretha, and

Nerbonne, 2012) and listeners’ perceptions (Wieling et al., 2014).

In practice, phonetic transcriptions of misperception data are largely unavoidable.

While we could, in theory, have the acoustic recordings of the intended utterances

(although this is likely to be impractical in the case of naturalistic data, since one

would need to carry a recording device at all times), it is impossible to acoustically

record one’s speech perception.

The following sections will document the transcription process used for the nat-

uralistic misperception corpus. Section 2.2.1 will look at the databases of English

pronunciation used as the source of pronunciation for the transcriptions and for how

to decide amongst alternative pronunciations. Section 2.2.2 will describe the level

of detail for the segmental transcription and the inventory of IPA symbols that was

used. Section 2.2.3 will describe the level of detail for the prosodic transcription.

Section 2.2.4 will review options for the syllabification of segmental transcriptions,

justify the selection of one of these methods, and develop a principled way of se-

lecting valid onsets for the selected method. The remaining sections will establish

the dialectal transcription of the corpus. Starting with Section 2.2.5, the question

of which accent should be transcribed for the intended and perceived utterances is

addressed. Section 2.2.6 will move on to establishing the dialect classification for

American English based on geographic locations. Finally, Section 2.2.7 will establish

a vowel set for each major dialect in the corpus.
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2.2.1 Choices of pronunciation

This section will first document the source of pronunciation and outline the tran-

scription preferences when alternative interpretations are possible.

2.2.1.1 Databases of English pronunciation

The Longman Pronunciation Dictionary (henceforth LPD) (Wells, 2008) and Long-

man Dictionary of Contemporary English (Fox and Combley, 2009) were used exten-

sively as a reference for pronunciation. While there are other pronunciation dictio-

naries such as CELEX (Baayen, Piepenbrock, and Gulikers, 1995) and CMUDICT

(Weide, 2014), these only cover either British or American English and most of their

entries contain only one pronunciation variant. LPD covers both British (Received

Pronunciation) and American English (General American) as well as providing multi-

ple variants for the majority of the entries, e.g. the word chocolate has the following

pronunciations – in American English ["tSO:kl@t], ["tSA:kl@t] and in British English

["tS6kl@t], ["tS6klIt], ["tS6k@l@t] and ["tS6k@lIt]. The rich phonetic variations of LPD

allow a better quality transcription, and therefore LPD was chosen as the core pro-

nunciation database for this study.

In addition, the following online pronunciation dictionaries of English were con-

sulted when words could not be found in LPD: howjsay (http://www.howjsay.com/)

and Forvo (http://www.forvo.com/) contains audio recordings of words/phrases

without phonetic transcriptions. The former is only British English, while the latter

covers over 240 languages. In addition, four dictionaries were used for the phonetic

transcriptions: Cambridge Dictionaries Online (http://dictionary.cambridge.

org/), Oxford Dictionaries (http://www.oxforddictionaries.com/), Merriam

Webster (http://www.merriam-webster.com/) and The FreeDictionary.com (http:

//www.thefreedictionary.com/). For an overview of these online dictionaries,

please see Kyprianou (2009) and particularly for Forvo, see Grieser (2010).
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2.2.1.2 Pronunciation preference

The transcriber is faced with many alternative pronunciations for each word and

combinations of words for each sentence when performing phonetic transcriptions

from orthographic texts.

A simple heuristic set was used for selecting between the alternative pronun-

ciations. Firstly, weak forms were preferred in order to better capture the more

conversational/informal nature of the majority of the corpus. Secondly, the inten-

tion was to minimise the number of segmental mismatches, in order to avoid creating

mismatches that are due to alternative pronunciations. These two heuristics can be

automated. First, all possible alternative pronunciations of the intended utterance

and the perceived utterance were generated. Second, all alternative pronunciations

of the intended utterance were then paired with those of the perceived utterance.

Third, the number of segmental mismatches were calculated for each pair from the

overall length of the sum of the two utterances, and the total number of schwas

across both utterances. Finally, the optimal pair was chosen as the one with the

minimal number of segmental mismatches; if more than one pair satisfied this crite-

rion, the one with the shortest length of the sum of the two utterances was chosen;

if more than one pair was still available, the one with the highest number of schwas

was chosen; finally if more than one pair was still available, one would be arbitrar-

ily selected to be the optimal pair. This automated method was not used for the

naturalistic misperception corpus. Instead, during manual transcription, this set of

simple heuristics was generally followed instead.
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2.2.2 Segmental transcription

2.2.2.1 Levels of segmental transcription

The International Phonetic Alphabet (henceforth IPA) (International Phonetic As-

sociation, 1999) was chosen as the convention to follow for the transcription in this

study. The level of transcription followed was neither entirely phonemic nor pho-

netic. Lexical stress was transcribed with the primary ["] and secondary stress marks

[­]. Vowel length was either short or long, using only the length mark [:] for long, and

no additional mark for short, but as we will see later in Section 2.2.7.1.3, the length

mark [:] is replaced with the preceding segment and did not appear in the transcrip-

tion. Syllabic consonants [
"
] were not transcribed, with schwas instead assumed to be

fully realized.

Tapping was applied to the dialects that have this process. I assumed complete

neutralisation of /d/-tapping and /t/-tapping and the IPA standard symbol for a

tap [R] was used. To identify the taps, a search was done to extract any words that

contain /t/ or /d/ that were preceded by any vowels (including rhotic ones) and

were followed by a set of vowels including a) the “weak vowels” happy, comma and

letter, b) any unstressed fleece, since in some cases (within and across accents),

it is used for happy, and c) any unstressed goat, since some of the goat vowels

can behave like a weak vowel and often undergo weakening to become a schwa and

therefore trigger /t/-/d/ tapping, e.g. fell[ow] as fell[@]. They are essentially all the

Germanic words spelt with letters “ow” (e.g. tomorrow) and loans spelt the letter “o”

(e.g. photo).1 The extracted word list was then manually checked by a linguist who

is a native speaker of American English before being used in the tapping conversion.2

Finally tapping across words was applied by converting word-final /t/s and /d/s that

were preceded and followed by any vowels (including rhotic ones), e.g. I nee[R] a pen.
1I thank Prof. John Harris for his expert input on formulating these rules as well as pointing

out the existence of the “fake” [ow]s
2I thank Prof. Andrew Nevins for his input as a native speaker.
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A three-way contrast for stops is encoded in the transcription – aspirated voice-

less, unaspirated voiceless and voiced stops. Aspiration [h] was transcribed for the

aspirated voiceless stops [ph, th, kh]. The unaspirated voiceless stops are [p, t, k].

The voiced stops are [b, d, g]. To identify the aspirated voiceless stops, I applied a

rule-based conversion, stating that /p, t, k/ that are aspirated, if a) they are at the

beginning of a word, or b) before a stress (primary or secondary) vowel but not after

/s/, otherwise they are unaspirated voiceless stops.3

The following section will briefly describe the inventory of IPA symbols chosen

for transcribing this corpus which was adjusted for handling multiple accents. The

specific details on how these symbols are used to capture different vowel sets can be

found in Section 2.2.7.

2.2.2.2 Inventory of IPA symbols

The 28 consonant phones are tabulated in Table 2.1. They are as follows: [p, t, k, b,

d, g, S, Z, tS, dZ, T, D, s, z, f, v, h, m, n, N, ô, l, j, w, ph, th, kh, R].

The 16 vowel phones are tabulated in Table 2.2. They are as follows: [e, E, a,

A, 6, 2, O, o, u, 0, @, 3, I, U, æ, i]. This set of vowels is typically used to transcribe

General American and the RP pronunciations; for instance, in LPD (Wells, 1990),

with the exception of the phone [0] which is a centralised [u]. [0] was included

since many accents (Standard Southern British English, American Southern English,

Philadelphia English and others) have undergone goose-fronting, resulting in a

centralised [u]. Its inclusion will increase the accuracy of the transcriptions, and

since it exists in multiple accents that the corpus covers, it is less likely to lead to

serious data-sparsity issues in later analyses.

3I thank Prof. John Harris for his expert input in formulating these rules.
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Bilabial Lab. dent. Dental Alveolar P-alveo. Retroflex Palatal Velar Uvular Pharyng. Glottal
Plosive p(h) b t(h) d k(h) g

Nasal m n N

Trill
Tap/Flap R

Affricate tS dZ

Fricative f v T D s z S Z h
Lat. Fric.
Approx ô j
Lat. appr. l
Other phones: w – Voiced labial-velar approximant

Table 2.1: Consonant chart used in transcription

æ

UI

•3•
@
••

0•• u••

o••

O•2•

6•A••a•

•E•

•e•

•i•

Table 2.2: Vowel chart used in transcription
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2.2.3 Prosodic transcription

2.2.3.1 Levels of prosodic transcription

The placement of stress is particularly problematic when transcribing connected

speech and this section will discuss the treatment of stress in the corpus. This

issue was discussed by Wells (2011), which described different levels of prosodic

transcription, and they are summarised in Table 2.3.

Level Descriptions

1 Add stress marks to monosyllabic words, but only to content words and
not function words. Polysyllabic words have stress marks.

2 Remove stress marks on the 2nd element of compounds and repeated words.
Apply stress shift rules (e.g. fif["]teen, but ["]fifteen ["]people. Add stress to
function words that are used contrastively.

3 Divide the utterance into intonation phrases.
4 Underline nuclear tones.
5 Convert nuclear accent marks into tone marks.

Table 2.3: Levels of prosodic transcription

From the five levels of prosodic transcription outlined by Wells (2011), level 1

was chosen to be the prosodic transcription of this corpus. The reason for choosing

to incorporate only the lowest level of prosodic details is as follows.

Level 4 and level 5 aim to transcribe tone marks, but it is clear that without an

audio recording of the spoken speech the estimate of tone marks will be poor because

a single orthographic sentence can be read with multiple intonational patterns (Wells,

2006). Furthermore it is also not possible to know how the intonational pattern of

the perceived utterance should be transcribed, since the perceivers in most cases were

not trained phoneticians, and even if they were (such as those in the Labov corpus),

they did not transcribe them in their reports. Level 3 would divide the connected

speech into intonation phrases, but since we are rejecting level 4 and level 5, level 3

is no longer essential.

Level 2 aims to handle a) the placement of stress on compounds, b) repeated
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words should be unstressed, c) stress shift rules (Wells, 2006), and d) contrastive

stress of function words. This level of transcription was attempted at an early stage of

the corpus compilation, but soon it became clear that this involves a lot of ambiguities

and arbitrary decisions.

Firstly, it is not always clear what constitutes a compound and what is the stress

pattern. While compounds in English are often single-stressed, such as "bedtime, the

complication arises with open compounds. Open compounds, such as "running shoes,

can be confused with a phrase consisting of adjective plus noun such as "running

"water, which has lexical stress on both the adjective and noun. Open compounds

can be also be double-stressed, and the general guidelines for their identification is

that they are often a) proper names of people, roads, and places, such as ­Noam

"Chomsky, b) compounds in which the first element names the place or time, such

as ­town "hall, and c) compounds in which the first element names the material or

ingredient (but not cakes and juices), such as ­apple "pie. Furthermore, compounds

can be nested, such as [[credit card] bill], and depending on the nested structure, the

stress placement differs (Wells, 2006, pp. 100–106). These complications were evident

an attempt at level 2 transcription. In cases where a potential compound was not

listed in databases of pronunciation dictionaries, I consulted multiple native speakers

and found that they often had different intuitions of whether it is an open compound

or an adjective-plus-noun phrase along with associated stress patterns. In fact there

is considerable variability in compound stress in English that are determined by

structural, semantic, and analogical factors (Plag, 2006).

Secondly, stress shift rules often result in multiple possible stress patterns, and

some rules can be optionally applied. One such rule is the rule of three. This rule

weakens the middle stress of three adjacent stresses, e.g. "A "B "C would become "A B

"C. However, with longer strings of potential stresses, the number of possible patterns

increases, e.g. "A "B "C "D can have B unstressed, "A B "C "D or C unstressed, "A "B
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C "D or a repeated application of the rule with both B and C unstressed "A B C "D.

While I illustrated this rule with a string of letters, all of the above is applicable to

normal sentences (Wells, 2006, pp. 228–229).

For these reasons, level 2 transcription was ultimately not adopted for the prosodic

transcription. This leaves us with level 1, which is to add stress marks to monosyl-

labic words, but restricted to content words and not to function words, and polysyl-

labic words would carry lexical stress.

2.2.3.2 Function words

I manually selected a list of monosyllabic function words compiled by first extracting

all monosyllabic words from CELEX (Baayen, Piepenbrock, and Gulikers, 1995)

using Leanlex (Keuleers, 2006), and manually selecting the words that are typically

unstressed according to my own intuition. On top of this CELEX list, I also added

other monosyllabic words that are typically unstressed. The final list was checked by

two native English linguists4. I admit fully that some of choices might be ambiguous,

e.g. just and such, and that arbitrary decisions were made in some cases (discussed

below). The full list of typically unstressed monosyllabic word is shown below in

Table 2.4.

Some of the ambiguous cases involved words that can be both a content word

and a function word, depending on their syntactic category. These words are on, off,

in, which can be either a preposition (function word) or an adjective (content word).

Similarly, words such as such and just are on the borderline between being a function

word and a content word (Wells, 2011). While it is possible to subdivide these cases

with respect to their syntactic categories, this was done only with the misperception

corpus and not the control corpus (see Section 2.3) because the control corpus would

have to have been automatically transcribed due to the large amount of data, and
4I thank John Harris and Andrew Nevins for their input.
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therefore for ease of auto-transcription, this level of detail was sacrificed.

’d at he in she there’ll we who’ll your
’em be he’d is she’d there’s we’d who’re
’ll been he’ll it she’ll there’ve we’ll who’s
’re but he’s it’s she’s these we’re who’ve
’s by her its should they we’ve whose
’tis can him just so they’d were why
’twas could his like some they’ll what why’d
’twere d’you how lo such they’ve what’s why’ll
’twill did how’d may than thine when why’s
’twould do how’ll me that this when’s why’ve
’un does how’s might that’s those where will
’ve er how’ve my the thou where’d with
a for i nor thee though where’ll would
am fro i’d o’ their thy where’s you
an from i’ll of them till which you’d
and had i’m on then to while you’ll
are has i’ve or there us who you’re
as have if shall there’d was who’d you’ve

Table 2.4: Monosyllabic typically unstressed function words in English

2.2.4 Syllabification

Having transcribed the utterances on a segmental level, the next step was syllabifica-

tion, or assigning syllable boundaries such that a word can be divided into syllables.

Doubts have been raised about the precise nature of a syllable and also the value

of such a concept, but there is overwhelming evidence that supports the psychologi-

cal reality of syllables. Examples include speech production errors (Fromkin, 1973),

language games (Botne and Davis, 2000), the fact that young children can identify

the number of syllables before they can identify the number of phonemes (Liber-

man et al., 1974), word segmentation from continuous speech signals (Cutler and

Norris, 1988; Cutler and Butterfield, 1992; Cutler, 1997) and others. Furthermore,

phonological theories (Hulst and Ritter, 1999) heavily rely on the notion of syllables.

Syllabification in the corpus would therefore allow us to address questions that
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are relevant to syllabic and sub-syllabic units (onsets, nuclei, and codas). In the

domain of perception, syllabification would enable us to answer questions such as

– Are stressed syllables less likely to be misperceived than unstressed syllables? Is

word mis-segmentation – that is, when one word is mis-segmented as two or more

words (e.g. atom is misperceived as at home) – more likely to occur at a syllable

boundary, or within a syllable (that is, not before an onset or after a coda)?

Together it is clear that syllabification will potentially enrich the transcription

of the corpus and thus allow us to address a broader range of research questions.

Practically speaking, for the purpose of this thesis, we therefore need an automatic

procedure to segment each word into syllables. There are two general approaches,

rule-based and data-driven. In the sections below, I will first provide a brief overview

of some of these methods and then argue for the most appropriate for this thesis,

and also make the parameters/specifications of the method explicit.

2.2.4.1 Rule-based

2.2.4.1.1 The Sonority Principle The principle assigns a numeric value for

every phone and the value is determined by a scale which is based on the amount of

acoustic intensity (Selkirk, 1984). After assigning the sonority values (a high value

indicates high sonority, while a low value indicates low sonority), each word will then

have a sonority profile. Finally, the syllable boundaries lie at the starting point (i.e.

on the left-hand side of the consonants) of the troughs of the sonority profile.

This method has drawbacks. Firstly, it is possible that the trough contains mul-

tiple phones that have the same value, i.e. a trough with a flat surface. In these

cases, several possible splits are possible. Secondly, some argue that the notion of

sonority does not contribute to the phonological knowledge that is used by listeners

and talkers to attach linguistic meaning to the speech signal (Harris, 2006). Fur-

thermore, the supposed correlate of sonority, acoustic intensity, poorly captures the
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perceptual distance between phones (Harris, 2006), which in turn casts doubt on its

role in syllabification.

2.2.4.1.2 The Legality Principle Hooper (1972) states that the possible onsets

and codas are those that are phonotactically possible at word-initial and word-final

positions. This principle suffers from the same drawback as the Sonority Principle, in

that there could be multiple splits for intervocalic consonant sequences. Furthermore,

a split might not always be possible, and in these cases, one has to either create illegal

codas or illegal onsets, and the Principle of Irregular Codas (Pulgram, 1970) states

that the illegality should lie in the codas.

2.2.4.1.3 The Maximal Onset Principle The Maximal Onset Principle gives

preference to the longest possible onset that can be found at word-initial positions

(Kahn, 1976). When splitting the intervocalic consonants, it will take the longest

possible onset to be the onset and anything that is remains before the onset is a coda.

It is essentially the same as the sum of the Legality Principle and the Principle of

Irregular Coda. Its advantage is that it will always yield a possible syllabification.

2.2.4.1.4 A modified Maximal Onset Principle This modified principle is

proposed by Gorman (2013) for syllabifying RP English. A number of modifications

were made to the principle. To make the syllabification process more explicit, the

author discussed the treatment of ambiguous segments /r/ and the onglides /j/ and

/w/ when separating sequences of segments into vowels and consonants. The heuris-

tic is such that an ambiguous segment is vocalic if it imposes restrictions on adjacent

vowels, and it is consonantal if it imposes restrictions on adjacent consonants.

The treatment for /r/ is that pre-consonantal r is assigned to the preceding

nucleus (Harris, 1994; Pierrehumbert, 2006). This is motivated by the fact that /r/

is the only consonant that allows glottalisation in /r/-ful British dialects (Harris,
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1994, p. 258), e.g. “certain” /s3ôt@n/ as [s3ôP@n], but not “mister” /mIst@ô/ as

/mIsP@ô/; and /r/ is the only consonant that disallows deletion of word-final /t,d/ in

American dialects e.g. “third” /T3ôd/ as [T3ô] is not allowed, but /mEnd/ as /mEn/

is allowed. These phonological behaviours suggest that pre-consonantal r patterns

with other vowels if it was considered to be part of the nucleus.

The treatment for the onglide /j/ is that a) /j/ is part of the onset word-initially

or preceded by one consonant, e.g. “yes” /jEs/ and “junior” /Ã0wn.jI@/; b) /j/ is part

of the nucleus if preceded by two or more consonants; therefore, it is restricting the

adjacent vowels. The argument is that an onset /j/ can be followed by any vowels,

but a nucleus /j/ can only be followed by /0w/. The treatment for /w/ is that

it is always an onset based on its co-occurrence with other consonants, such that

the onset that can precede /w/ is almost always /k/ (see Figure 2.11 for the token

frequencies of [Cw] onsets); therefore, it is restricting the adjacent consonants.

Another modification concerns the syllabification of intervocalic consonant clus-

ters. The difference with the maximal onset principle is that there is an additional

constraint, which is when an intervocalic consonant cluster is preceded by a stressed

lax vowel, e.g. in words such as “whisper” /wIsp@ô/, the first consonant should be

assigned as the coda, giving /wIs.p@ô/, while the maximal onset principle would in

fact syllabify the word as /wI.sp@ô/.

2.2.4.1.5 Ambisyllabicity Ambisyllabicity can be used to form an additional

step in the process of syllabification. This additional step would assign the onset of

an unstressed syllable as the coda of the preceding syllable, such that this consonant

is both an onset and a coda belonging to both syllables simultaneously (Kahn, 1976,

p. 33). The advantage of including the notion of ambisyllabicity in syllabification is

particularly clear when operating with the Sonority Principle (Wells, 1990). Consider

cases where the intervocalic consonant, e.g. in “city”, is at the trough of the sonority

profile and it can be assigned to the left or the right peak, and the decision of
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assigning it to either of the peaks seems arbitrary; therefore assigning it as both

the onset and the coda becomes an attractive option, although Harris (2013) argues

extensively against the use of ambisyllabicity in English. The details will not be

repeated here. Readers are encouraged to go to the source article for a complete set

of arguments.

2.2.4.1.6 Wells (1990) Wells (1990) has proposed an English-specific syllabifi-

cation system. Similar to the Maximal Onset Principle, it seeks to maximise the coda

and not the onset. The codas are those that are phonotactically possible at word-

final positions. Intervocalic consonant clusters are therefore split by maximising the

codas, and the remaining consonants belong to the onset of the next syllable. Fur-

thermore, this system is sensitive to morpheme boundaries, such that the morpheme

boundaries are always split, e.g. “re-print” would have the syllabification, /ri.pôInt/,

coinciding with the morpheme boundary. It relies on seven phonetic patterns (such

as pre-fortis clipping, tapping, stop epenthesis, elision of /t, d/ and more) which can

be captured using allophonic rules that make use of syllable boundaries as part of

their triggering environments.

Harris (1994, p. 225) stated that the “coda” analyses of these phonetic patterns

by Wells (1990) are founded on two assumptions, in light of the arguments in Harris

(1994, Ch. 2, 4) on the topics of constituency and licensing. The two assumptions

are repeated verbatim below – 1) A word-final consonant occupies a coda and 2) A

consonant occupying an onset in core syllabification can under certain circumstances

be captured into a preceding coda.

2.2.4.1.7 Interim conclusion So far, I have summarised some of the rule-based

syllabification methods, and their pros and cons in terms of practical and theoretical

reasons. In the next section, I will summarise some data-driven methods of syllabi-

fication, before finally comparing all the approaches and selecting one that is most
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appropriate for my purposes.

2.2.4.2 Data-driven

Data-driven approaches to syllabification have been argued to yield better syllabifi-

cation than rule-based approaches (See Marchand, Adsett, and Damper (2009) for

a summary of the comparisons between rule-based and data-driven approaches). I

will describe two sub-approaches that utilise the data to infer syllabification below.

The first approach will be referred to as human-dependent, and the second approach

as inductive for the reasons outlined below.

2.2.4.2.1 Human-dependent approach This approach is one that seeks to

learn syllabification from pre-syllabified corpora. Numerous methods have been pro-

posed, e.g. Daelemans and Bosch (1992) on Dutch; Bartlett, Kondrak, and Cherry

(2009) on English; and Goldwater and Johnson (2005) on English and German. The

pre-syllabified corpora are syllabified manually; for instance, those from dictionaries

such as CELEX (Baayen, Piepenbrock, and Gulikers, 1995). Concretely, these pre-

syllabified corpora are used to a) obtain a set of syllabification rules, and b) derive

the weights (probabilities) of these rules.

One of the drawbacks with this approach is that it relies on human-judgement

of syllabification, which is known to be inconsistent (Goslin and Frauenfelder, 2001).

This approach assumes that a given set of syllabified words has been “correctly”

syllabified. While native speakers can identify the number of syllables with ease,

they have great difficulties identifying the syllable boundaries. The boundaries de-

termined by native speakers have a high level of variability (Goslin and Frauenfelder,

2001). This variability can also been found in when comparing the syllabifications

in pronunciation dictionaries – in one comparison between CELEX and Merriam-

Webster Online, Bartlett, Kondrak, and Cherry (2009) found that there is only 84%

consistency.
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2.2.4.2.2 Inductive approach This approach requires no pre-syllabified cor-

pora, and relies on the statistical distributions of each segment with its adjacent seg-

ment(s); for instance, using transitional probability or mutual information (Gambell

and Yang, 2005). For word segmentation using transitional probability, the general

idea is to calculate the transitional probabilities of a syllable given the previous sylla-

ble. Since the transitional probabilities at word boundaries tend to be lower than the

transitional probabilities between word-internal syllables, word boundaries can there-

fore be found/estimated. The process is then applied iteratively until the change in

transitional probabilities stabilizes (Gambell and Yang, 2005). This method for word

segmentation can be extended to syllabification by using segments as the unit, in-

stead of syllables. The disadvantage with this approach is that it is unclear how much

data is needed to minimise the effect of data-sparsity. That is, the co-occurrences

of some segments might not be found in the data or might have very low frequency,

therefore yielding unreliable estimates of their probabilities.

2.2.4.3 Comparison

It is not easy to compare different syllabification methods, since there is no gold

standard, i.e. a set of syllabified words that are assumed to be correct. As previously

mentioned, human-judgements of syllabifications are unreliable and so are the ones in

pronunciation dictionaries as they are done by humans. Furthermore, even if human

judgements of syllabifications are consistent, they might not reflect psychological

reality.

Given that an objective measure is not readily available, we shall consider the

practicality and the drawbacks of each method before deciding which is more appro-

priate for this thesis.

Neither of the rule-based methods, the Sonority Principle and the Legality Prin-

ciple, are always able to provide consistent syllabification, so there will not be con-
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sidered further. The addition of ambisyllabicity to a given syllabification method,

especially with the Sonority Principle, could resolve many cases of ambiguous syllab-

ifications, but its application to English syllabification is highly questionable from a

theoretical perspective (Harris, 2013), so this method is also ruled out. Wells’s (1990)

syllabification system is English-specific, and it is based on a particular method of

analysing allophonic patterns in English, but given that alternative analyses can be

made without relying on a specific method of syllabification (Harris, 1994, p. 225),

this method is ruled out for being overly analysis-dependent as well as language-

specific. The modified Maximal Onset Principle (Gorman, 2013) is theoretically

grounded, which could potentially bias any results derived from the data to favour

particular theories or mirror results obtained from similar data – one of the argu-

ments for the front onglide /j/ being assigned to the nucleus after a consonantal

onset is from the behaviour of [ju] in speech error (speech misproduction) data, and

the data in this thesis are also error-based data (speech misperception) – which could

therefore bias the results from speech misperception data towards being more similar

to those from speech misproduction data. As a result, this modified Maximal Onset

Principle is therefore ruled out. We are therefore left with the “original” Maximal

Onset principle amongst the rule-based methods.

Moving to the data-driven methods, the human-dependent approach is ruled out

on the basis of the need to rely on pre-syllabified data, which themselves might be

unreliable. This leaves us with the inductive method. On the one hand, the inductive

method is more attractive than the Maximal Onset Principle as it is entirely unsuper-

vised – no knowledge of onset, nucleus, and coda is needed, while the Maximal Onset

Principle requires one to specify the nucleus of each word in order to extract all the

possible word-initial onsets, and what constitutes the nucleus is also debatable, as

we have seen in the treatments of /r/ and onglides in English by Gorman (2013).

On the other hand, the inductive approach is not appropriate for this thesis
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because the corpus is transcribed dialectally, and since some dialects have more data

than others, the phones are not evenly distributed. This means that for the dialects

that have little data, the inductive method would face the issue of data-sparsity, and

would potentially yield less consistent syllabifications than those dialects that have

more data. For this reason, the inductive approach is rejected, and the Maximal

Onset Principle is adopted for the syllabification of the phonetic transcriptions in

this thesis.

2.2.4.4 The specifications of Maximal Onset Principle

Having established which syllabification method to use, we must then provide the

Maximal Onset Principle with three lists of segments – the possible consonants,

nuclei and onsets. The consonant list is the same for all dialects. The onset list

is also the same for most but not all dialects, because more conservative dialects,

such as Southern British English, contain specific onsets that are being phased out

in less conservative dialects. The nucleus list, however, requires a different list for

each dialect, because different dialects have different vowel sets (see Section 2.2.7 for

the different vowel sets). In the following paragraphs, I will specify these three lists,

paying special attention to the possible onset list.

2.2.4.4.1 Possible consonants The list of possible consonants is as follows: [p,

t, k, b, d, g, S, Z, tS, dZ, T, D, s, z, f, v, h, m, n, N, ô, l, j, w].

2.2.4.4.2 Possible nuclei The list of possible nuclei consists of vowels, which

are those listed in vowel set tables in Section 2.2.7, with the exception of the rhotic

vowels. Since the rhoticity of these rhotic vowels is denoted as a separate phone

following the vowel (see Section 2.2.7.2.2 for the arguments supporting this analysis),

it will not be included as part of the nucleus. Furthermore, this treatment would

more accurately encode the re-syllabification of the rhotic consonant as part of the
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onset when followed by a nucleus.

2.2.4.4.3 Possible onsets To determine what constitutes a possible onset, I

have devised a principled method using frequency distributions of any potential

onsets and this method is outlined below.

The most straightforward way to determine the set of possible onsets is to simply

accept all word-initial consonant sequences as possible onsets. However, some word-

initial consonant sequences are deemed as marginal cases; for instance, according to

Harris (1994, p. 57), [sf] and [vr] are of marginal status, presumably because they are

restricted to relatively fewer lexical items, e.g. the derivatives of sphere and vroom.

Furthermore, Harris (1994, p. 58) argued that certain sequences are inadmissible,

e.g. [pw], [bw], [tl], [dl] and [Tl], and this is because of an intra-onset phonotactic

constraint which states that homorganic clusters with [l] and [w] are not allowed. If

we were to accept marginal cases such as [vr] and [sf] as possible onsets then the

Maximal Onset Principle would syllabify them as onsets word-medially, e.g. several

as [sE.vô@l], and Oxford as [Ok.sf@d]. If we were to accept these marginal consonant

sequences to be valid onsets, then we would have to accept that these onsets are

productive only word medially, and there are some constraints stopping them from

occurring word-initially, which seems to be an illogical account of the pattern. Fur-

thermore, under a parsimonious account of onset storage, these consonant sequences

are best treated as invalid onsets, since word-medially they could be split as part of a

coda and part of another valid onset; and only word initially, they are allowed to be

onsets for restricted number of items. Following Harris (1994, p. 57), I conclude that

it is unreasonable to blindly accept all word-initial consonant sequences as possible

onsets, and therefore this option is ruled out.

While it is possible to adopt the analyses by Harris (1994, pp. 57–58) for deter-

mining possible onsets, some of the conclusions are less clear cut, specifically whether

a particular consonant sequence is marginal or inadmissible. [Tw] for example is said
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to be a clearly admissible case (as much as uncontroversial cases like [pl] and [kl]),

while [sf] is said to marginal (Harris, 1994, p. 57). However, [Tw] is in fact restricted

to a few lexical items such as thwack, thwart and Thwaite. One could therefore argue

that [sf] and [Tw] should share the same status – either both marginal or both admis-

sible. Let us examine another two supposedly admissible sequences, [dw] and [gw].

[dw] can only be found in 26 words in the Current British English pronunciation dic-

tionary (henceforth CUBE) (Lindsey and Szigetvári, 2014) and they can be reduced

down to six lemma, dwarf, dwell, Dwight, dwindle, Dworkin, and Dwyer. Out of these

six lemma, three are proper names, leaving three content words. [gw] can only be

found in 44 words in CUBE. By inspecting these words, it was found that are mostly

loanwords and proper names, from Spanish (e.g. guano, guava and Guatemala), and

from Welsh (e.g. Gwen and Gwersyllt). Furthermore, the phonotactics of the En-

glish language could be affected by new words in the language, e.g. recently coined

words such as vlog (“Video blog”) have introduced the [vl] onset. Having considered

these ambiguious cases in Harris (1994, pp. 57–58), it is clear that we need a more

principled method.

My principled method considers two factors in the selection of the possible onsets.

The first factor is the number of times a given consonant sequence occurs between

the word-initial boundary and the first nucleus of a word. This factor can be seen

as the amount of evidence that supports the onset status of a consonant sequence,

such that the more frequently a consonant sequence is found word-initially, the more

likely this sequence is a possible onset. The second factor is the number of times

a given consonant sequence could form an onset word-medially. This factor can be

seen as the amount of impact on the syllabification if a consonant sequence were a

possible onset.

In order to calculate these two factors, we need an IPA-transcribed lexicon. A

Southern British English lexicon, CUBE (Lindsey and Szigetvári, 2014), was chosen
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over an American English lexicon because Southern British English is a conservative

dialect (Harris, 1994, p. 61); e.g. it preserves specific onsets such as [tj] and [dj],

which are often absent in General American English. This lexicon would allow us

to establish a set of possible onsets for British English and for American English

after removing specific onsets. The reason for choosing CUBE over another British

lexicon such as CELEX (Baayen, Piepenbrock, and Gulikers, 1995) is that CUBE is

being updated regularly, while CELEX has not been updated since 1995.

The lexicon underwent two simple pre-processing steps. First, all multi-word

entries (e.g. Christmas Eve) were removed. Second, the remaining entries in CUBE

were enriched with token frequency information from SUBTLEX-UK (van Heuven

et al., 2014), a corpus compiled using British Broadcasting Corporation subtitles.

The words with zero frequency were excluded. The final lexicon contains 70,181

word forms, with IPA transcriptions as well as token frequencies. This final lexicon

was then used to compute the two factors. All potential onsets were identified by

extracting all word-initial consonant sequences. In total, 100 types of consonant

sequences were found. We then calculated the token frequencies of these potential

onsets separately at word-initial positions and at word-medial positions.

Figure 2.11 plots the word-initial token frequency by the word-medial token fre-

quency, both of them logarithmically (base 10) transformed. The plot shows that

the 100 potential onsets cluster into two groups. One group is located at the top

right portion of the plot starting from the value 4 (log10 initial/medial frequency)

on both axes. The second group is located on the left hand side of the plot, in the

range of 0 to 4 (log10 initial token). There is a clear linear relationship between the

two frequency measures for the top right group, while this relationship is absent for

the other group.

One explanation for the observed patterns is that the frequency of a valid onset

word-initially and word-medially should be similar because, on average, syllables
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Figure 2.11: Frequencies of initial onsets vs. medial onsets with k-means clustering

tend to re-occur to form polysyllabic words and the position of re-occurrence should

be relatively unrestricted. While a bogus onset need not follow this trend, consider

the observations that [pS] is highly infrequent word-initially and only exists in one

word, pshaw, but this sequence occurs much more often word-medially, e.g. in option.

This is because word-medially the [p] can be a coda, and the [S] can be an onset,

and codas and onsets are relatively unrestricted in terms of their co-occurrences

compared to onset clusters.
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Looking more closely at the onsets in each group, it is immediately clear that the

top right group consists of uncontroversial onsets, such as [fl], [t] and many others,

while the group on the left consists of ambiguous/marginal onsets, such as [Sm]

(e.g. schmuck) and [pw] (e.g. Poirot). This suggests that we could use the clusters

formed by the two frequency measures to help us select the set of valid onsets for the

Maximal Onset Principle. To identify the clusters beyond visualisation, I employed

the k-mean clustering algorithm (MacQueen, 1967). Clustering techniques seek to

assign a set of objects into clusters by the similarity of the objects, which, in our

case, is based on the two frequency measures mentioned above.

The first step when clustering is to determine the number of clusters (also com-

monly referred to as k). Although two clusters were visually identified, it is possible

that the 100 potential onsets could be better explained with more clusters. The

NbClust package (Charrad et al., 2014) was applied to determine k by 26 established

indices in the clustering literature the optimal number of clusters. The chosen num-

ber of clusters was the one selected by the majority of the indices. In addition to

NbClust, the chosen number of clusters was checked against a within-cluster sum of

squares (WCSS) curve, to see if it lies on the “knee” of the curve. The “knee” of the

WCSS curve is a common visualisation method for identifying the optimal number

of clusters.

According to the majority rule by NbClust, the best number of clusters is two,

voted by ten out of 26 indices. The number of clusters that came second was three,

voted by only four out of 26 indices; therefore, the two-clusters solution is a clear

winner. This is confirmed by the WCSS curve, see Figure 2.12, where the knee of

the curves lies in the range of two to six clusters.

The function kmeans from the R (R Core Team, 2013) was used to perform the

k-means clustering. The number of clusters (k) was set to two, with 1,000 random

starting points. The two clusters are visualised in Figure 2.11 in two different colours
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Figure 2.12: The within-cluster sum of squares (WCSS) curve for clustering potential
onsets

and pointers. Cluster 1 is in red with the circle pointers, which contain the invalid

onsets. Cluster 2 is in blue with the triangular pointers, which contain the valid

onsets.

Cluster 1 consists of the following 40 invalid onsets – [Sô, bw, dv, dw, fw, gj, gw,

Sj, km, kn, Sl, lj, Sm, Sn, nd, nkô, nw, Sp, pS, pw, sô, sf, sj, skj, skl, spj, sv, St, tb, ts,

Sv, vô, vl, vw, Sw, zl, zw, Z, Tj, Tw].

Cluster 2 consists of the following 60 valid onsets – [ô, dZ, S, tS, b, bô, bj, bl, d,

dô, D, dj, f, fô, fj, fl, g, gô, gl, h, hj, j, k, kô, kj, kl, kw, l, m, mj, n, nj, p, pô, pj, pl, s,

sk, skô, skw, sl, sm, sn, sp, spô, spl, st, stô, stj, sw, t, tô, tj, tw, v, vj, w, z, T, Tô].

Finally, to evaluate the strength of clusters, I transformed the two frequency

measures into two principal components, and plotted the outlines of the two clusters
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found by the k-means algorithm, see Figure 2.13. This visualisation was done using

the clusplot function from the cluster package (Maechler et al., 2013). The plot

shows that the two outlines barely overlapped, which indicates that our clusters are

stable and means the classification of the possible onsets to each cluster is not likely

to change.

Looking more closely at Cluster 1, we see that it contains one consonant, [Z]. This

clustering solution suggests that [Z] is an invalid onset, which is primarily due to its

low frequency of occurrence word-initially. In fact, [Z] was a relatively new phoneme

for English. It did not exist in Old English and was introduced through the process of

palatalization, primarily from /zj/ and reinforced by French words that are familiar

to English speakers (Fromkin, Rodman, and Hyams, 2003, p. 492). Word-initially,

[Z] is more restricted and is more prone to variation with the affricate [dZ], which

contributes to its low frequency of occurrence. The implication of excluding [Z] as

a valid onset is that instances of an empty-headed onset would be introduced, e.g.

in measure [mEZ.@ô]. Following the principle of avoiding empty-headed onsets,[Z] is

classified as a valid onset, despite the clustering analyses.

In sum, I developed a principled method for selecting a set of possible onsets for

the Maximal Onset Principle of syllabification. The 60 valid onsets in cluster 2 will

be used for the syllabification in this thesis. For all but the British English accents,

any coronal + [j] potential onsets were excluded from the set of possible onsets

(Harris, 1994, p. 61), meaning that the following four onsets were removed – [tj, dj,

nj, stj]. The method described above has plenty of room for further development; for

instance, it could take into account of the prosodic shape of the words. Nonetheless,

it is serviceable for the purpose of finding a set of valid onsets. One further remark

is needed about the invalid onsets at word-initial positions. The invalid onsets are at

word-initial positions, so they do not impact on the syllabification process. However,

in terms of assigning each phone into either an onset, a nucleus or a coda, they do
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Figure 2.13: Principle components plot showing K-means clusters

matter. The simple solution I employed was to only assign these invalid onsets as

being onsets in word-initial positions.

2.2.5 Dialectal transcription

In this section, I will discuss how to best represent the interlocutors’ accents in the

transcriptions. While we have dialectal information about the utterers and perceivers,

both the intended and perceived utterances were transcribed with the dialectal group
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of the utterers. In the following paragraphs, I will outline the rationale behind this

decision. Let us consider the four possible options when deciding which accent to

apply to the intended and perceived utterances.

1. Transcribe both intended and perceived utterances with the utterer’s accent.

2. Transcribe both intended and perceived utterances with the perceiver’s accent.

3. Transcribe the intended utterance with the utterer’s accent and the perceived

utterance with the perceiver’s accent.

4. Transcribe the intended utterance with the perceiver’s accent and the perceived

utterance with the utterer’s accent.

The first option is to assume that the perceiver perceives both the intended and

perceived utterances with the utterer’s accent. The rationale behind this option

is that the traditional phonetic transcriptions represent the speech as produced by

the utterers. Furthermore, in the perspective of the perceivers, when a perceiver

perceives an utterance, he/she perceives it in the utterer’s accent (be it correctly or

incorrectly perceived), rather than his/her own, hence our ability to detect an accent

that is differ from our own, and the same logic therefore applies to a misperceived

version of the utterance.

The second option is to assume that the perceiver perceives both the intended

and perceived utterances with his/her own accent. This is supported by the fact

that adults are able to ignore indexical variations in speech for lexical retrieval, as

demonstrated by word recognition models that rely on underlying representations

(McClelland and Elman, 1986; Norris, 1994), or exemplars (McLennan and Luce,

2005). The use of the perceiver’s accent for the transcription is therefore to represent

the speech that has normalised to the perceiver’s accent.
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The third option is to transcribe the intended utterance with the utterer’s accent

and the perceived utterance with the perceiver’s accent. This option takes into ac-

count the accents of the perceiver and the utterer, but if the intended speech were

to be transcribed in the utterer’s accent and the perceived speech in the perceiver’s

accent, then the difference between the two transcribed utterance would not only

include perceptual errors (made by the perceiver) but also accent differences, mainly

due to different vowel qualities. These differences in vowel qualities are not necessar-

ily errors made by the perceiver, as the perceiver could in fact retrieve the correct

lexical item despite differences in vowel qualities between the two accents. In other

words, this option will overgenerate errors.

Finally, the fourth option is to use the perceiver’s accent to transcribe the in-

tended utterance and the utterer’s accent to transcribe the perceived utterance. This

option is entirely illogical; like the third option, it will overgenerate errors.

In sum, the first and second options seem to be most reasonably justified. The

main difference between the two options is that the first option focuses on the in-

coming speech signal, and thus is similar to a surface/narrow representation, while

the second option focuses on the processed speech signal, and thus is similar to a

phonemic representation. While both are equally compelling, the first option is less

susceptible to particular phonemic analyses under specific phonological frameworks,

and for this reason, I will opt for the first option in this thesis – to transcribe both

the intended and perceived utterances with the utterer’s accent. Crucially, this de-

cision does not necessarily imply that the perceiver’s accent is entirely ignored; the

perceiver’s accent can be taken into account in subsequent analyses such as including

them as a random effect in a mixed-effects model (Bates et al., 2014). In future work,

one could devise a method of incorporating the perceivers’ accents in the perceived

transcription, while avoiding overgeneration of errors by comparing the orthography

in the intended and perceived utterances, such that the mismatches in the phonetic
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transcriptions are ignored if they belong to identical orthographic forms.5 In this

sense, they are correctly perceived in terms of lexical retrieval.

2.2.6 Dialect classification

Two of the subcorpora, Nevins and Labov, have extensive demographic information

about where the interlocutors are from. I used this information to refine the tran-

scription for different English accents. Wells’s (1982) Accents of English was used

extensively to transcribe the different English accents. Since a majority of data is

related to North American English accents, it would be useful to also consult Labov,

Ash, and Boberg’s (2005) Atlas of North American English. However, Labov, Ash,

and Boberg’s (2005) use of IPA notation is limited and relies more on formant val-

ues and descriptions; for this reason, it was not used as the primary source of my

dialectal transcription of North American English accents.

2.2.6.1 American English varieties

The demographic information was predominantly for American English varieties.

The reporters provided the specific states, cities or regions, and I classified them into

major regional speech areas with the dialectal map by Thomas (1958), reprinted

in Wells (1982d, p. 472, Fig. 17). These major regional speech areas are Eastern

New England, New York City, Middle Atlantic, Southern, Western Pennsylvania,

Southern Mountain, Central Midland, Northwest, Southwest and North-Central and

they are summarised in the first two columns of Table 2.5.

Guided by these major regional speech areas, each of the states, cities or regions

were categorized into broad dialectal groups; see the last column of Table 2.5. These

broad dialectal groups are Philadelphia, New York City, Southern, New England and

General American (GenAm). The broadness of these varieties was motivated by the
5I thank Jamie White for suggesting this possibility.
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scope of documentation by Wells (1982a). Since the lexical set for Chicago accents

was not readily available, it was assumed to be GenAm, and this assumption is

justified by the small portion (1%) of the data with speakers from Chicago; therefore,

1% is unlikely to have a major impact on the overall analyses. It is worth noting that

the mapping between the major regional speech areas and the broad dialectal groups

was not one to one, e.g. the major regional speech area for District of Columbia is

Middle Atlantic and it is classified as the broad dialectal group, GenAm, while the

major regional speech area for Delaware is also Middle Atlantic, but is classified as

Philadelphia, not GenAm.

To ensure accuracy, both levels of classifications of the American English varieties

were done in consultation with a native American English linguist6.

2.2.6.2 Other varieties

The coverage of accents in this chapter was motivated by the scope of documen-

tation by Wells (1982a). Other dialectal varieties in the corpora include Received

Pronunciation/Southern Standard British English, Ireland, Scotland, South Africa,

Canada, India, New Zealand, Caribbean and Australia. Apart from the accents

mentioned above, there are another ≈ 40 accent groups covering 4% of the corpus

(≈ 200 data points) and are as follows – Africa7, China, Singapore, Colombia, Is-

rael, Vietnam, Czech Republic, Kenya, Turkey, Russia, France, Germany, Mexico,

Korea, Italy, Guatemala, Brazil, Nigeria, Taiwan, Spain, Senegal, Norway, Japan,

Zimbabwe, Somalia, Saudi Arabia, Romania, Poland, Peru, Madagascar, Lebanon,

Greece, Finland, Ethiopia, Cameroon, Cambodia and Bahrain. The vowel sets of

these 40 accents were not taken into account in the transcriptions of the corpus, and

were transcribed as GenAm.

6I thank Prof. Andrew Nevins for his expert comments.
7Although African English is covered by Wells (1982a), only the Yoruba vowel set was docu-

mented. It is not appropriate to generalise the Yoruba variety to all African English varieties, and
therefore the Africa accent group was not taken into account.
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Regions Abbrev. Speech areas (Thomas, 1958) Broad Dialectal Groups

Alabama AL Southern Southern
Alaska AK Northwest GenAm
Arizona AZ Southwest GenAm
Arkansas AR Southern Southern
California CA Southwest GenAm
Colorado CO Central Midland GenAm

Connecticut CT Eastern New England New England
Delaware DE Middle Atlantic Philadelphia
Florida FL Southern Southern
Georgia GA Southern Southern
Hawaii HI Southwest GenAm
Idaho ID Northwest GenAm
Illinois IL North-central GenAm
Indiana IN Central Midland GenAm
Iowa IA North-central GenAm

Kansas KS Central Midland GenAm
Kentucky KY Southern Mountain Southern
Louisiana LA Southern Southern

Maine ME Eastern New England New England
Maryland MD Middle Atlantic GenAm

Massachusetts MA Eastern New England New England
Michigan MI North-central GenAm
Minnesota MN North-central GenAm
Mississippi MS Southern Southern
Missouri MO Central Midland GenAm
Montana MT Northwest GenAm
Nebraska NE Central Midland GenAm
Nevada NV Southwest GenAm

New Hampshire NH Eastern New England New England
New Jersey NJ Middle Atlantic Philadelphia
New Mexico NM Central Midland GenAm
New Yorka NY North-central GenAm

North Carolina NC Southern Southern
North Dakota ND North-central GenAm

Ohio OH North-central GenAm
Oklahoma OK Central Midland GenAm
Oregon OR Northwest GenAm

Pennsylvaniab PA Western Pennsylvania GenAm
Rhode Island RI Eastern New England New England

South Carolina SC Southern Southern
South Dakota SD North-central GenAm

Tennessee TN Southern Mountain Southern
Texas TX Southern Southern
Utah UT Central Midland GenAm

Vermont VT Eastern New England New England
Virginia VA Southern Southern

Washingtonc WA Northwest GenAm
West Virginia WV Southern Mountain Southern

Wisconsin WI North-central GenAm
Wyoming WY Central Midland GenAm

Subregions

Puerto Rico PR – GenAm
District of Columbia DC Middle Atlantic GenAm

New York City – New York City New York City
Long Island – New York City New York City
Upstate NY – North-central GenAm
Philadelphia – Middle Atlantic Philadelphia

Table 2.5: Classification of major regional speech areas

aOnly if the reporter stated New York with a specific city/region that is not New York City,
otherwise it is assumed to be New York City.

bOnly if the reporter did not state Philadelphia, otherwise it is assumed to be Philadelphia.
cOnly if the reporter did not state that it is Washington DC, otherwise it is assumed to be

District of Columbia.
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2.2.7 Dialectal vowel sets

Wells (1982a) was used extensively to determine the surface realisation of the vowel

set for each accent. Firstly the phonemic vowel sets were tabulated; secondly the

detailed discussions of the surface realisation were utilised and tabulated; thirdly

if any vowels not mentioned in the discussions of the surface realisation, they were

extrapolated using the available surface realisations and phonemic representations;

finally, the extrapolated vowel sets were simplified and normalised across all of the

accents.

Vowel sets of multiple accents would invariably contain a wide range of phonetic

realisations and therefore a wide range of phonetic symbols, which were dependent

on the narrowness of the reported descriptions. When comparing transcriptions of

different accented speech, it is preferable, if not essential, to reduce the number of

different segments. This is because confusion matrices, which are used in multiple

analytical techniques in this thesis, are negatively affected by sparsity – the zero

frequency problem. Since confusion matrices contain frequencies of co-occurrences

between any two segments that occurred even once, the segments with low frequencies

of occurrence would therefore have many zero co-occurrences with other segments.

Rather than removing segments that have low frequencies in the confusion matrices,

they could be simplified, so that they are denoted by common segments. More

specifically, this can be done by ignoring diacritics (Wieling et al., 2014, p. 261) or

choosing phonetically similar segments as substitutes.

These steps are exemplified in detail in Section 2.2.7.1 and Section 2.2.7.2, where

the General British and General American accents were tabulated respectively and

subsequent accents were tabulated in the same way.
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2.2.7.1 General British

The General British (henceforth GenBr) vowel set is described in this section and

the complete table with different vowel sets is summarised in Table 2.6.

The first column “Keyword” is based on the standard lexical sets for English by

Wells (1982b, pp. 118–124). Lexical sets are a group of words that have the same

pronunciation for a certain sound for a particular accent. Wells’s (1982) lexical sets

were based on two ‘reference’ accents of English, namely Received Pronounciation

(henceforth RP) and General American (henceforth GenAm). A few modifications

were made to better capture the accent variations, specifically, the following pre-

vocalic counterparts were added: near, square, start, north, force, cure,

nurse, comma, kit and dress, some of which were described also in Wells (1982b,

p. 124).

The keywords were divided into two major groups and each major group was sub-

divided into two minor groups. The two major groups were the non-pre-vocalic group

(from kit to letter) and the pre-vocalic group (from mirror to lettering), e.g.

the [I] in kit is non-pre-vocalic, while the [Iô] in mirror is pre-vocalic. The two

subgroups were vowels that do not contain a historical /r/ (from kit to comma in

the non-pre-vocalic group; mirror and merry in the pre-vocalic group) and those

that contain one (from nurse to letter in the non-pre-vocalic group; current

to lettering in the pre-vocalic group).

To determine an appropriate vowel set for GenBr, I first examined two existing

vowel sets, namely Wells (1982b, pp. 118–124), which is phonemic, and the Longman

Pronunciation Dictionary by Wells (2008), which has a broad surface representation.

These two sets were tabulated in the second and the third columns respectively. I

then completed the vowel set by extrapolation, which was tabulated in the fourth

column. Specific to the GenBr accent, I included another vowel set by Lindsey

(2012b), which is a narrow surface representation and more contemporary, and this
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set is tabulated in the fifth column. I identified and discussed the modifications I

made to existing vowel sets below. The final vowel set for GenBr used in this thesis

is listed in the final column of Table 2.6.

The final vowel set is in favour of a more contemporary SSBE accent, moving

away from RP. While the use of a General British accent might overgeneralise the

various British accents, for practical purposes its use is needed, similar to the General

American accent. This is partially justified by the fact that dialect levelling is a

widespread phenomenon in Britain and diversification is hard to find (Kerswill, 2003).

Furthermore, it is well-documented that RP is fading with so-called Estuary English

becoming more dominant (Kerswill, 2001; Przedlacka, 2001; Kerswill, 2006).

2.2.7.1.1 DRESS and HAPPY Wells (1982b, pp. 118–124) and Wells (2008)

both aimed to describe a vowel set for RP, and the former contained more fine-

grained details for the pre-vocalic counterparts. Amongst the lexical sets that they

both shared, only the happy vowel is different. Wells (1982b, pp. 118–124) was

used as the base to make certain modifications, starting with the dress and happy

vowels which are discussed below.

The dress vowel was denoted with a tense vowel [e] in Wells (2008) and Wells

(1982b, pp. 118–124). In the case of Wells (2008), the choice of the tense vowel was

chosen on the basis of parsimony of symbols. The choice of the symbol for dress is

closely linked to that of face, but since across dialects the face vowel is typically

realised as a long monophthong [e:] or a diphthong, there will be no confusion even

if the symbol for dress were to be the same as that of face without the length

mark or the offglide (Wells, 2009).

In the case of Wells (1982b, pp. 118–124), this vowel was chosen on the basis

of phonology. Phonetically, it is described by Wells (1982b, p. 128) as “a relatively

short, lax, front mid vocoid”. Given that the purpose of the vowel sets in this thesis is

to transcribe (and therefore differentiate) differently accented speech, a phonetically
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accurate symbol is preferred, namely the lax vowel [E].

Regarding the happy vowel, it was denoted with a short tense vowel [i] in Wells

(2008) instead of the lax vowel [I] in Wells (1982b, pp. 118–124). This difference is

due to an on-going change in Southern British English and RP – with older speakers

using the lax variant and with younger speakers using the tense variant (Fabricius,

2002). To capture a more contemporary GenBr use, the tense variant is preferred.

2.2.7.1.2 Offglides and GOOSE Lindsey (2012b) described a vowel set for

Standard Southern British which differs significantly from RP and indeed from Wells

(1982b, pp. 118–124); for instance, the vowel quality for goose (from [u] to [0]).

Only four lexical vowels were identical between Lindsey (2012b) and Wells (1982b,

pp. 118–124), namely the kit, dress, comma and start. The modifications are

based on the recordings of modern southern English speakers as well as those of

the Royal family members who are traditionally regarded as the benchmark for RP

(Wales, 1994).

While this vowel set is considerably more accurate, it lacks consistency with the

vowel sets of other accents described by Wells (1982a); therefore, it would not be

appropriate to blindly adopt the set by Lindsey (2012b). However, some aspects of

Lindsey’s (2012) vowel set could be adopted, including the treatment of offglides in

diphthongs and long vowels as well as goose-fronting.

The key modifications by Lindsey (2012b) on non-short-lax vowels are threefold.

Firstly, the centring diphthongs (near, square and cure) are proposed to be

long monophthongs. While this modification was well-motivated by an on-going

change, this change is nonetheless incomplete, as the more conservative variants

remain prevalent in less prestigious accents of Southern Britain (Lindsey, 2012a).

Therefore this monophthongization was not adopted for this thesis, with the second

vowel-unit left as [@].

Secondly, two of the long vowels described in Wells (1982b, pp. 118–124), namely
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fleece and goose, are denoted to have the offglides [j] and [w] respectively instead

of the length mark. Similarly, the diphthongs ending with a lax vowel [I] and [U] are

denoted to have the offglides [j] and [w], with face, price and choice ending with

[j] and goat and mouth ending with [w].

Finally, while most of the vowels differ in terms of quality from those in Wells

(1982b, pp. 118–124), the modification of the vowel quality for goose is arguably

most needed (from [u] to [0]), due to a change called goose-fronting. This change

in RP was first reported by Henton (1983) (Wells, 2010). In surveys by Przedlacka

(2001), it was found that while sociolinguistic factors do influence the amount of

fronting, the vowel is nonetheless fronted for both RP and Estuary English. Since

the change is on the whole complete, the modification is therefore adopted for this

thesis.

2.2.7.1.3 Length marks Since the transcription will be used in the alignment

process for identifying errors, a natural question is how we should treat the length

marks in the alignment process. This is ultimately related to the question of what

the minimal alignment unit is and whether it be an IPA segment or a phoneme. This

question will be examined in more detail in Section 2.4.3, but it is clear that the IPA

symbol [:] is a not a psychologically plausible unit of perception. The length mark

denotes the lengthening of the preceding sound, and for the purpose of this thesis

I will replace the length mark with the preceding symbol. This will be consistently

applied to all the vowel sets of other accents in subsequent sections.

2.2.7.1.4 Extrapolation Finally, some vowels were absent across all of the vowel

sets that were examined, especially current to lettering in the pre-vocalic group.

These will be completed using the patterns observed in the non-pre-vocalic group. In

GenBr, we simply assumed that [ô] is appended to their non-pre-vocalic counterparts,

nurse to letter. If the surface realisation of a lexical vowel was not documented
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but its phonemic form was, then first the surface realisation of another lexical vowel

with the same phonemic form was adopted. For instance, the surface realisation of

palm was not documented, but that of bath, which has the same phonemic form

as palm, was; if this method of extrapolation was not available, then its phonemic

form would be used as the surface realisation. Similar extrapolation processes were

used for describing other accents in subsequent sections.

2.2.7.2 General American

Following the same format as Section 2.2.7.1 for describing the General British vowel

set, I first examined two existing vowel sets in order to determine an appropriate

vowel set for General American (henceforth GenAm), namely the Longman Pronun-

ciation Dictionary by Wells (2008) and Wells (1982b, pp. 120–124). The final vowel

set for GenAm for this thesis is listed in the final column in Table 2.7.

2.2.7.2.1 Length contrast and GOAT Wells (1982b, p. 120) suggested that

vowel length is not as important in GenAm than it is in other accents, since the

duration of all the vowels can vary depending on their phonetic environments. For

this reason, the phonemic representation of the GenAm vowel set does not contain

any length marks, e.g.vowels such as fleece and goose are denoted as /i/ and /u/.

Wells (2008) on the other hand denoted length marks in its vowel set, highlighting

the surface forms. For the purpose of this thesis, the analyses by Wells (1982b,

pp. 120–124) on length contrasts will not be adopted, instead the length contrasts as

in the case of Wells (2008) will be maintained, since our transcription aims to reflect

the input listeners received, and thus a surface realisation is preferred. Related

to the issue of length contrasts, Wells (1982b, pp. 121–124) denoted the phonemic

representation of goat with a monophthong /o/ while Wells (2008) used a diphthong

[oU]. The diphthong notation is preferred since it is the surface realisation.
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Keyword Phonemic Surface (Broad) Extrapolated Surface (Narrow) This thesis
Wells (1982b)
(pp. 118–124) Wells (2008) Lindsey (2012b)

kit /I/ [I] [I] [I] [I]

dress /e/ [e] [e] [E] [E]

trap /æ/ [æ] [æ] [a] [æ]

lot /6/ [6] [6] [O] [6]

strut /2/ [2] [2] [@] [2]

foot /U/ [U] [U] [8] [U]

bath /A:/ [A:] [A:] – [AA]

cloth /6/ – [6] – [6]

fleece /i:/ [i:] [i:] [Ij] [ij]
face /eI/ [eI] [eI] [Ej] [ej]
palm /A:/ – [A:] – [AA]

thought /O:/ [O:] [O:] – [OO]

goat /@U/ [@U] [@U] [@w] [@w]

goose /u:/ [u:] [u:] [0w] [0w]

price /aI/ [aI] [aI] [Aj] [aj]
choice /OI/ [OI] [OI] [oj] [Oj]

mouth /aU/ [aU] [aU] [aw] [aw]
happy /I/ [i] [i] – [i]
comma /@/ [@] [@] [@] [@]

nurse /3:/ [3:] [3:] [@:] [33]

near /I@/ [I@] [I@] [I:] [I@]

square /E@/ [E@] [E@] [E:] [E@]

start /A:/ [A:] [A:] [A:] [AA]

north /O:/ [O:] [O:] [o:] [OO]

force /O:/ – [O:] – [OO]

cure /U@/ [U@] [U@] [8:] [U@]

letter /@/ – [@] – [@]

mirror (kit) /Iô/ – [Iô] – [Iô]

merry (dress) /Eô/ – [eô] – [Eô]

current (nurse) – – [3:ô] – [33ô]

nearer (near) /I@ô/ – [I@ô] – [I@ô]

mary (square) /E@ô/ – [E@ô] – [E@ô]

safari (start) – – [A:ô] – [AAô]

aura (north) – – [O:ô] – [OOô]

oral (force) – – [O:ô] – [OOô]

curie (cure) – – [U@ô] – [U@ô]

lettering (letter) – – [@ô] – [@ô]

Table 2.6: Vowel set: General British

2.2.7.2.2 NURSE and LETTER In GenAm, the nurse and letter vowels

are typically referred to as r-coloured vowels. Wells (2008) favoured the single symbol

notation [3~], while Wells (1982b, pp. 120–124) favoured the dual symbol notation

[3ô]8. Phonetically, the r-colouring is spread throughout the whole vowel (Wells,
8The vowel length difference and the type of the rhotic segment are irrelevant here.

134



1982b, p. 121), and this observation motivates the choice of [3~] which symbolises [3]

with r-colouring. The dual symbol notation preferred by Wells (1982b, pp. 121–124)

was motivated by its parallelism with the start and north vowels. Concretely,

Wells (1982b, p. 121) argued that words such as farm and form often involve an

r-coloured vowel which is the realisation of an underlying /ô/ segment as in /Vô/,

and therefore in the case of GenBr and GenAm, the relationship between the two

accent groups for the nurse vowel, [3:] (GenBr) and [3ô] (GenAm), will parallel

those of the start and north vowels – [A:] (GenBr) vs. [Aô] (GenAm) and [O:]

(GenBr) vs. [Oô] (GenAm) respectively.

The dual symbol notation is preferred in this thesis. Firstly, since this vowel set

will be used to transcribe dialectal speech and comparisons will be made between

accent groups, the reasoning of Wells (1982b, pp. 120–124) on parallelism previously

summarised is also applicable here. Secondly, while the r-colouring and the whole

vowel are realised together in production, we do not have a priori any knowledge of

how they would be processed in perception. By using a single symbol notation, we

are assuming the r-colouring itself cannot be misperceived as an individual segment,

i.e. it is inseparable from the [3]. Having established the dual symbol notation for

nurse, the same should apply for letter and result in [@ô] instead of [@~].

2.2.7.2.3 NORTH and FORCE Wells (1982b, pp. 120–124) maintained the

difference between north and force vowels which are /Oô/ and /oô/ respectively.

Although not explicitly listed in Wells’s (2008) vowel set table, a brief examination

of the pronunciation used for keywords such as north and force showed that the

north-force distinction is not maintained, and therefore the GenAm vowel set is

assumed to have this merger. Since the Longman dictionary by Wells (2008) will

be used as the key reference of GenAm pronunciation, it will be assumed that the

GenAm vowel set in this thesis has the north-force merger.
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2.2.7.2.4 Others The lax vowel [E] is chosen for dress, and the short tense vowel

[i] is chosen for happy as discussed in Section 2.2.7.1.1. Similarly, the treatments

of offglides, length marks and extrapolations of missing vowels are the same as in

Section 2.2.7.1.2, Section 2.2.7.1.3 and Section 2.2.7.1.4.

2.2.7.3 New England

To determine an appropriate vowel set for the New England accent, and more specif-

ically the Eastern New England accent, I examined Wells (1982d, pp. 518–527). I

identified and discussed the modifications I made to the phonemic vowel set by Wells

(1982d, pp. 518–527). I utilised Wells’s detailed discussion of the surface realisation

of the accent and made similar modifications to other accents for consistency. The

final vowel set for the New England accent for this thesis is listed in the final column

in Table 2.8.

2.2.7.3.1 Non-rhoticity Wells (1982d, pp. 520–522) discusses the status of rhotic-

ity in the New England accent. In the early twentieth century, the New England

accent is traditionally described as being non-rhotic. Its non-rhoticity is described

as the loss of historical /r/ except before vowels. However, the accent is undergoing

rhoticity and studies on the accent of Boston (the principal city of eastern New Eng-

land) in the mid twentieth century showed that Boston speakers are more /r/-ful in

formal speech (Labov, Ash, and Boberg, 2005). More recent quantitative analyses by

Irwin and Nagy (2007) have shown that there is a high degree of variability, depend-

ing on the phoneme (e.g. nurse being more r-ful than letter), as well as social

factors including age, gender, and education. Given the high degree of variability,

an accurate estimate of rhoticity is not possible. Variability can also be found in

the transcriptions provided by the reporters of the naturalistic corpus in this thesis.

However, this information is not sufficient nor reliable for determining the rhoticity

of a given word in the corpus. Firstly the transcriptions usually only contain the key
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Keyword Phonemic Surface Extrapolated This thesis
Wells (120–124 1982b) Wells (2008)

kit /I/ [I] [I] [I]

dress /E/ [e] [e] [E]

trap /æ/ [æ] [æ] [æ]

lot /A/ [A:] [A:] [AA]

strut /2/ [2] [2] [2]

foot /U/ [U] [U] [U]

bath /æ/ [æ] [æ] [æ]

cloth /O/ – [O:] [OO]

fleece /i/ [i:] [i:] [ij]
face /eI/ [eI] [eI] [ej]
palm /A/ – [A:] [AA]

thought /O/ [O:] [O:] [OO]

goat /o/ [oU] [oU] [ow]
goose /u/ [u:] [u:] [uw]
price /aI/ [aI] [aI] [aj]
choice /OI/ [OI] [OI] [Oj]

mouth /aU/ [aU] [aU] [aw]
happy /I/ [i] [i] [i]
comma /@/ [@] [@] [@]

nurse /3ô/ [3~:] [3~:] [33ô]

near /Iô/ – [Iô] [Iô]

square /Eô/ – [Eô] [Eô]

start /Aô/ [A:] [A:] [AAô]

north /Oô/ [O:] [O:] [OOô]

force /oô/ – [O:ô] [OOô]

cure /Uô/ – [Uô] [Uô]

letter /@ô/ – [@ô] [@ô]

mirror (kit) /Iô/ – [Iô] [Iô]

merry (dress) /Eô/ – [Eô] [Eô]

current (nurse) – – [3~:] [33ô]

nearer (near) /Iô/ – [Iô] [Iô]

mary (square) /Eô/ – [Eô] [Eô]

safari (start) – – [A:ô] [AAô]

aura (north) – – [O:ô] [OOô]

oral (force) – – [O:ô] [OOô]

curie (cure) – – [Uô] [Uô]

lettering (letter) – – [@ô] [@ô]

Table 2.7: Vowel set: General American
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words that are different rather than the entire sentence, meaning the information is

incomplete. Secondly the transcriptions by some reporters were inconsistent and in-

correct; for instance, [@~] is sometimes used for cases that are clearly [@]9. A practical

decision is made to assume non-rhoticity for the vowel set used for the New England

accent in this thesis.

2.2.7.3.2 Vowel lengths As asserted by Wells (1982d, p. 519), length marks

could be used for the monophthongs in what the author called part-systems B, C

and D (a system for subdividing English vowel systems) which has a similar structure

to RP (Wells, 1982b, p. 182). Part B consists of traditional long vowels that are front

and diphthongs which have endpoints that are front. Part C consists of traditional

long vowels that are back and diphthongs which have endpoints that are back. Part D

consists of traditional long vowels that are open and diphthongs which have endpoints

that are open. This essentially translates as having the following monophthongs

carrying a length mark (i.e. long) – /i/ (fleece) as [i:], /u/ (goose) as [u:], /3/

(nurse) as [3:] and /a/ (start) as [a:]. Regarding the monophthong in cloth

and thought /6/, since lot is commonly merged with cloth-thought (Wells,

1982d, p. 524), all three vowels in the lexical set are indicated as having a length

mark, [6:] (Wells, 1982d, p. 519).

2.2.7.3.3 BATH Wells (1982d, pp. 518–527) suggested two possible symbols for

bath, /a/ and /æ/. Wells (1982d, p. 523) reported that the use of the [a] variant

was in sharp decline in New England, as suggested by multiple surveys (Miller, 1953;

Thomas, 1961) that [æ] was more dominant.

From a small survey of 14 Boston informants by Laferriere (1977), bath–raising,

[æ] to [E@], was in force and it was more productive with younger speakers. From
9Although one could argue these are accurate transcriptions of the results of hyper-rhotic pro-

nunciation, e.g. cough [k6:ôf], Wells (1982d, p. 522) suggested that these pronunciations are unlikely
to become established.
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this, Wells (1982d, p. 523) suggested that “as the older [a] declines, the new [E@] takes

over, often without a stop at the hitherto standard GenAm [æ] type.”.

However, a more recent meta-study by Nagy and Roberts (2004) on the phonol-

ogy of the New England accent came to the conclusion that the Eastern New England

accent has no bath/trap/dance-raising, except for Boston as reported by Lafer-

riere (1977) (Nagy and Roberts, 2004, p. 260). In conclusion, there is a lack of strong

evidence for bath-raising in the Eastern England accent, given that the small survey

by Laferriere (1977) on Boston might be undersampled and might not be generalised

to the rest of Eastern New England. Therefore bath will be denoted with [æ] in our

vowel set.

2.2.7.3.4 Others The treatments of offglides, length marks and extrapolations

of missing vowels are the same as in Section 2.2.7.1.2, Section 2.2.7.1.3 and Section

2.2.7.1.4. For goat, the underlying monophthong /o/ is treated as being realised

by a diphthong [oU], following the same argument as in Section 2.2.7.2.1. The short

tense vowel [i] is chosen for happy as discussed in Section 2.2.7.1.1.

2.2.7.4 Southern American

I examined Wells (1982d, pp. 527–553) to determine an appropriate vowel set for the

Southern American accent. I identified the modifications I made to the phonemic

vowel set by Wells (1982d, pp. 531, 550). I utilised Wells’s detailed discussion of

the surface realisation of the accent and made similar modifications to other accents

for consistency. Wells (1982d, pp. 542–545) examined two varieties of the Southern

accent, rhotic and non-rhotic. The main difference between them is the realisation of

vowels followed by a historical /r/, namely nurse to letter in the non-pre-vocalic

group. In the following paragraphs, the other vowels will be discussed since they

are identical for both varieties. Finally, the historical /r/ vowels will be discussed.

The reported transcription will be used to choose between the two varieties during
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 518–527)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /æ/ – [æ] [æ]

lot /6/ [6:] [6:] [66]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /a/, /æ/ [a], [e@] [æ] [æ]

cloth /6/ [6:] [6:] [66]

fleece /i/ [i:] [i:] [ij]
face /eI/ – [eI] [ej]
palm /a/ – [a:] [aa]

thought /6/ [6:] [6:] [66]

goat /o/ – [oU] [ow]
goose /u/ [u:] [u:] [uw]
price /aI/ – [aI] [aj]
choice /OI/ – [OI] [Oj]

mouth /aU/ – [aU] [aw]
happy /I/, /i/ – [I], [i] [i]
comma /@/ – [@] [@]

nurse /3/ – [3:] [33]

near /i@/ – [i@] [i@]

square /æ@/ – [æ@] [æ@]

start /a/ [a:] [a:] [aa]
north /6/ – [6:] [66]

force /o@/ – [o@] [o@]

cure /u@/ – [u@] [u@]

letter /@/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [3ô] [3ô]

nearer (near) – – [i@ô] [i@ô]

mary (square) – – [æ@ô] [æ@ô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [6:ô] [66ô]

oral (force) – – [o@ô] [o@ô]

curie (cure) – – [u@ô] [u@ô]

lettering (letter) – – [@ô] [@ô]

Table 2.8: Vowel set: New England
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re-transcription. If the reported transcription did not indicate that the speaker was

a rhotic speaker, then I assume the speaker was rhotic. The final vowel set for

the Southern accent used in this thesis is listed in the final column in Table 2.9

(non-rhotic) and Table 2.10 (rhotic).

2.2.7.4.1 Umlaut and Shading The six vowels /I E æ U 2 A/ were classified

as being lax in the Southern accent and two processes were reported to affect them

(Wells, 1982d, pp. 533–537): Umlaut and Shading. Umlaut is a process in which

the frontness of a vowel is affected by the vowel in the following syllable, e.g. the

/I/ vowel is realised as being successively less front in ripping (the most front), rip

and ripper (the least front). Shading is a process in which the frontness of a vowel

(particularly /I/) is affected by the following consonant. /I/ is realised faithfully as

[I] only when followed by a velar consonant; before a labial consonant, it is realised

more centrally [1fl] or in the notation of Wells (1982d, p. 534) [I].

For both Umlaut and Shading, Wells (1982d, pp. 533–537) used the IPA dia-

critics, [ẍ] and [xff] (x being a placeholder for the diacritics), to denote backing and

fronting. For the purposes of this thesis, these phonetic differences are ignored to

avoid introducing new types of segments and therefore will not be adopted.

2.2.7.4.2 Schwa offglides In a stressed monosyllable, the three lax vowels /I

E æ/ were reported to have a prominent schwa offglide when followed by a labial

consonant, and are instead realised as [I@ E@ æ@], while they would be lengthened

when followed by a non-labial consonant (Wells, 1982d, p. 535) and are realised as

[I: E: æ:]. For example, lip is realised as [lI@p], while bid, bed and bad are realised as

[bI:d], [bE:d] and [bæ:d]. This rule will be applied during transcription.

2.2.7.4.3 FOOT The foot vowel is often not rounded but more central and

unrounded as in [1fl] or in the notation of Wells (1982d, p. 534) [I]. However, this
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varies with different regions. In tidewater accents, it remains back with varying

degrees of roundness [U– ] (or in the notation of Wells (1982d, p. 536) [ω]) or [U]. Due

to its variability in both roundness and backness, a practical decision was made for

the vowel to be realised as [U] in our vowel set, assuming it is realised faithfully with

respect to its underlying form.

2.2.7.4.4 TRAP and BATH The trap–bath vowel was proposed to have /æ/

as the underlying form and /æI/ as a marginally phonemic/underlying form, since

there are a small number of minimal pairs, e.g. [kæIn] can “container” and [kæn]

can “be able” Wells (1982d, pp. 531-532). However, I rejected this dual-phoneme

analysis, and instead I follow McMillan’s (1946) rule-based analysis, where /æ/ is

realised as [æI] before a following /g/, voiceless fricatives /f T s S/, /v/ or /n/ (and

possibly /d/), in monosyllables. This rule was applied throughout the transcription.

2.2.7.4.5 STRUT The strut vowel was suggested to have several different qual-

ities (Wells, 1982d, p. 536): [3] (the most typical), [7ff] and [2] (in the tidewater area);

some speakers have an allophonic alternation with [3] elsewhere and [2] before a

labial. As [3] is the most typical realisation, this was chosen for my vowel set and

the other realisations were rejected on the basis of their high variability.

2.2.7.4.6 LOT The lot vowel varies along the front-back dimension, from [A] to

[Aff]. These two realisations can have an allophonic relationship for many southerners,

e.g. [A] before a velar and /w/, and [Aff] elsewhere (Wells, 1982d, p. 536). For

simplicity, [A] is chosen for my vowel set, over the fronted variant.

2.2.7.4.7 PRICE and MOUTH The price vowel is commonly realised as a

(near-)monophthong, [a(:)] or [aE] (Wells, 1982d, pp. 537–538). In prestigious vari-

eties, there is also an allophonic relationship that mirrors Canadian Raising, between

[a(:)] and [aI], with [aI] before a voiceless consonant within the same syllable and
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[a(:)] elsewhere. Given that the utterers in our corpus were mostly Harvard students,

I will assume they spoke a more prestigious variant which has this allophonic rule.

Furthermore, given the length of the monophthongal form is variable, for simplicity

I will assume that the monophthongal form is long [a:]. The most usual realisation

of the mouth vowel is [æU] (Wells, 1982d, p. 538), so this was the version adopted

in my vowel set.

2.2.7.4.8 FLEECE and GOOSE The fleece vowel is commonly realised as

monophthongal, and short or slightly lengthened, as in [i] or [i;], while the goose

vowel is generally diphthongal but central, [0u] or [0;] (Wells, 1982d, p. 539). The

vowels [i] and [0u] respectively were chosen to represent these vowels in my vowel

set. The lengthened variants were not chosen on the basis of them needing to use an

additional diacritic for length and avoiding questions whether a lengthened segment

constitutes, e.g. one or two alignment units (see Section 2.4.3 for discussion of the

minimal alignment unit).

2.2.7.4.9 FACE and GOAT The face vowel has a mid starting point, as as-

serted by Wells (1982d, p. 539), as [eflI]. The goat vowel is realised as [oU] in most

parts of the south. I have used [eI] for face, and [oU] for goat for my vowel set.

The change in starting point for face was ignored in order to remove the need for

an additional diacritic for vowel quality.

2.2.7.4.10 PALM The palm vowel is realised as either lot or non-rhotic start.

Both realisations were kept in my vowel set, with an arbitrary preference for the non-

rhotic start realisation. The lot realisation will only be used if it is indicated in

the transcriptions provided by the reporters.

2.2.7.4.11 THOUGHT and CLOTH The thought vowel is most stereotypi-

cally realised as [6U] a closing diphthong, but it can also be realised as monophthongal
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[O] or [6]. I will keep all three variants for my vowel set, giving priority to [6U]; [O] and

[6] will be used only if it is indicated in the transcriptions provided by the reporters.

Given that the underlying form for cloth is the same as thought, I will assume

there is a cloth-thought merger.

2.2.7.4.12 CHOICE The choice vowel may have two allophones for those who

have [I] for happy , with [OË] occurring word finally, and [OI] or [Oe] elsewhere. Given

it is not reported in our data whether a particular utterer has I for happy or not, it

is not possible to know if this allophonic rule should apply or not. Limited by the

level of detail provided by the reporters, I will assume [OI] as the sole realisation for

choice.

2.2.7.4.13 R-vowels The vowel set of the R-vowels is summarised in Table 2.9

and Table 2.10, namely nurse to letter in the non-pre-vocalic group, and cur-

rent to lettering in the pre-vocalic group.

Wells (1982d, p. 550) summarised the phonemic forms for the R-vowels for both

rhotic and non-rhotic accents for both the pre-vocalic and non-pre-vocalic groups,

with specific mention of the surface forms for nurse and letter. The surface

realisations of some R-vowels were available, such as force, cure and start. The

analyses by Wells indicated considerable variations in both surface realisation and

phonemic analyses. To simplify the possible realisations, the first realisation from

the list was picked for each vowel.

For the non-pre-vocalic group, the vowel set for the non-rhotic accent is as follows,

nurse: [3:], near: [I@], square: [æ@], start: [A:], north: [O:], force: [o@], cure:

[o@], and letter: [@]. Similarly, for the rhotic accent, they are as follows, nurse:

[3~], near: [Iô], square: [æô], start: [Aô], north: [Oô], force: [oô], cure: [oô],

and letter: [@].

The pre-vocalic group is the same for both accents: current: [3ô], period:
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[iô], mary: [eIô], mary: [eIô], safari: [Aô], aura: [Oô], oral: [oô], curie: [oô] and

lettering: [@ô]. current was chosen to be [3ô] instead of the underlying form /2ô/

to maintain consistency with the strut vowel and its non-pre-vocalic form nurse.

2.2.7.4.14 HAPPY and COMMA While the happy vowel has [I] as the com-

mon realisation, the rhotic accent has [i] as another possible realisation. For the

rhotic accent, I accepted both forms for the happy vowel, giving more priority to

[I] and only using [i] if the reported transcription indicated otherwise. The comma

vowel was [@] for both accents, and although it was reported that the rhotic accent

has a possible (stigmatized) form [@~] in southern mountain speech, this was rejected

for being too regionally-specific.

2.2.7.4.15 Others The treatments on offglides and length marks are the same

as in Section 2.2.7.1.2 and Section 2.2.7.1.3. All -ing suffixes have two realisations

[iN] and [IN] (Wells, 1982d, p. 550); [iN] is assumed unless [IN] is part of the reported

transcriptions.

2.2.7.5 New York City

To determine an appropriate vowel set for the New York City accent, I examined

Wells (1982d, pp. 501–518). I identified the modifications I made to the phonemic

vowel set by Wells (1982d, p. 503). I utilised Wells’s detailed discussion of the

surface realisation of the accent and made similar modifications to other accents for

consistency. Wells (1982d, pp. 505–508) examined the rhotic and non-rhotic varieties

of the New York City accent. The main difference between them is the realisation

of the vowels followed by a historical /r/, namely nurse to letter in the non-

pre-vocalic group. In the following paragraphs, identical vowels for both varieties

will first be discussed, and then the difference between rhotic and non-rhotic will

be highlighted. The reported transcription will be used to choose between the two
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 530–552)

kit /I/ [I] ∼ [I@], [I:] [I] ∼ [I@], [I:] [I] ∼ [I@], [II]

dress /E/ [E] ∼ [E@], [E:] [E] ∼ [E@], [E:] [E] ∼ [E@], [EE]

trap /æ/, /æI/ [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æj], [æ@], [ææ]

lot /A/ [A] ∼ [Aff] [A] ∼ [Aff] [A]

strut /2/ [3], [7ff] [3], [7ff] [3]

foot /U/ [1fl] [1fl] [U]

bath /æ/, /æI/ [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æj], [æ@], [ææ]

cloth /O/ – [6U], [O], [6] [6w], [O], [6]

fleece /i/ [i], [i;] [i], [i;] [i]
face /eI/ [eflI] [eflI] [ej]
palm /A/ [A:], [A] [A:], [A] [AA], [A]

thought /O/ [6U], [O], [6] [6U], [O], [6] [6w], [O], [6]

goat /oU/ [oU] [oU] [ow]
goose /u/ [0u], [0;] [0u], [0;] [0w]

price /aI/ [a:], [aE] ∼ [aI] [a:], [aE] ∼ [aI] [aa] ∼ [aj]
choice /OI/ [OI], [Oe] ∼ [OË] [OI], [Oe] ∼ [OË] [Oj]

mouth /æU/ [æU] [æU] [æw]

happy /I/ [I] [I] [I]

comma /@/ – [@] [@]

nurse /3:/ [3:], [3I] [3:], [3I] [33]

near /I@/, /E@/ – [I@] [I@]

square /æ@/, /E@/ – [æ@] [æ@]

start /A:/, /A/ [A:] [A:] [AA]

north /O:/, /O/ [O:] [O:] [OO]

force /o@/, /oU/ [o@], [oU] [o@], [oU] [o@]

cure /o@/, /U@/, /oU/ [o@], [U@], [oU] [o@], [U@], [oU] [o@]

letter /@/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) /2ô/ – [3ô] [3ô]

nearer (near) /iô/ – [iô] [iô]

mary (square) /eIô/ – [eIô] [ejô]

safari (start) /Aô/, /Oô/ – [Aô] [Aô]

aura (north) /Oô/ – [Oô] [Oô]

oral (force) /oUô/ [oô] [oô] [oô]

curie (cure) /oUô/, /uô/ [oô] [oô] [oô]

lettering (letter) /@ô/ – [@ô] [@ô]

Table 2.9: Vowel set: Southern – non-rhotic: “∼” denotes an allophonic relationship

146



Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 530–552)

kit /I/ [I] ∼ [I@], [I:] [I] ∼ [I@], [I:] [I] ∼ [I@], [II]

dress /E/ [E] ∼ [E@], [E:] [E] ∼ [E@], [E:] [E] ∼ [E@], [EE]

trap /æ/, /æI/ [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æj], [æ@], [ææ]

lot /A/ [A] ∼ [Aff] [A] ∼ [Aff] [A]

strut /2/ [3], [7ff] [3], [7ff] [3]

foot /U/ [1fl] [U] [U]

bath /æ/, /æI/ [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æI], [æ@], [æ:] [æ] ∼ [æj], [æ@], [ææ]

cloth /O/ – [6U], [O], [6] [6w], [O], [6]

fleece /i/ [i], [i;] [i] [i]
face /eI/ [eflI] [eI] [ej]
palm /A/ [A:], [A] [A:], [A] [AA], [A]

thought /O/ [6U], [O], [6] [6U], [O], [6] [6w], [O], [6]

goat /oU/ [oU] [oU] [ow]
goose /u/ [0u], [0;] [0u] [0w]

price /aI/ [a:], [aE] ∼ [aI] [a:], [aE] ∼ [aI] [aa] ∼ [aj]
choice /OI/ [OI], [Oe] ∼ [OË] [OI], [Oe] ∼ [OË] [Oj]

mouth /æU/ [æU] [æU] [æw]

happy /I/ [I], [i] [I], [i] [I], [i]

comma /@/, /@ô/ – [@] [@]

nurse /2ô/ [3~] [3~] [3ô]

near /Iô/, /Eô/, /æô/ – [Iô] [Iô]

square /æô/, /æIô/, /Eô/ – [æô] [æô]

start /Aô/, /Oô/ [Aô] [Aô] [Aô]

north /Oô/ – [Oô] [Oô]

force /oUô/, /oU/ [oô] [oô] [oô]

cure /oUô/, /uô/, /Uô/, /oU/ [oô] [oô] [oô]

letter /@ô/ – [@ô] [@ô]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) /2ô/ – [3ô] [3ô]

nearer (near) /iô/ – [iô] [iô]

mary (square) /eIô/ – [eIô] [ejô]

safari (start) /Aô/, /Oô/ – [Aô] [Aô]

aura (north) /Oô/ – [Oô] [Oô]

oral (force) /oUô/ [oô] [oô] [oô]

curie (cure) /oUô/, /uô/ [oô] [oô] [oô]

lettering (letter) /@ô/ – [@ô] [@ô]

Table 2.10: Vowel set: Southern – rhotic: “∼” denotes an allophonic relationship
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varieties during re-transcription. If the reported transcription did not indicate that

the speaker was rhotic, then the assumption will be that the speaker was rhotic.

The final vowel set for the New York City accent for this thesis is listed in the final

column of Table 2.11 (non-rhotic) and Table 2.12 (rhotic).

2.2.7.5.1 FLEECE and GOOSE fleece and goose are commonly realised

as diphthongs. The starting point of the vowel varies sociolinguistically, with [Ii] and

[Uu] more likely by the middle-class, and [1fli and [@fiu] by the working-class. Further-

more, goose has an additional common realisation that is monophthongal [u:] but

slightly rounded.

In the vowel set, I selected the diphthongal variants more associated with the

middle-class, [Ii] and [Uu] for fleece and goose. Since happy is underlyingly the

same as fleece, I assumed it has the same surface forms.

2.2.7.5.2 BATH-raising /æ/ is realised as a closer, longer, diphthongal variant

(e.g. [æ:@]) before a final voiced stop, a voiceless fricative, or /m, n/, if one of

these consonants is followed by an inflectional boundary or an obstruent, but not

if the consonant is followed by a vowel or liquid. Elsewhere this vowel is realised

as [æ] (Wells, 1982d, p. 510). The exact realisation of the raised variant varies

sociolinguistically (Wells, 1982d, pp. 511–512). For simplicity, I included only the

two common realisations [æ:@] and [E:@].

2.2.7.5.3 CLOTH and THOUGHT /O@/ in cloth and thought is raised

for the starting-point of the vowel, with [Ofi] by the standard and upper-middle-class

and with [o] in casual middle-class speech or careful reading style of the lower class

(Wells, 1982d, p. 513). For simplicity, I chose only the standard/upper-middle-class

realisations.
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2.2.7.5.4 NURSE and CHOICE The traditional realisation of nurse and

preconsonantal choice is [3I]. However, this realisation was reported to be sharply

disfavoured, and [3~] and [OI] were growing in favour instead for nurse and choice

respectively (Wells, 1982d, p. 508). Therefore, [3~] and [OI] were chosen for my vowel

set.

2.2.7.5.5 Centring diphthongs The centring diphthongs are /I@/, /E@/, /A@/,

/O@/, /O@/ and /U@/, and they are not restricted to historical /r/ vowels. They are

realised monophthongally when followed by an intervocalic consonant within a word,

such as hearing, dairy, Chicago, sausage and curious.

The non-rhotic variety has the following realisations: [I:@] ∼ [I:], [E:@], ∼ [E:], [Aff:@]

∼ [Aff:], [Ofi:@] ∼ [Ofi:] and [U:@] ∼ [U:]. The realisations in the rhotic variety are simply

appended with /r/, with the exception of /A@/ which has an additional realisation

as [Affô].

2.2.7.5.6 LOT and START In the non-rhotic variety, lot and start are dis-

tinguished by the difference in their backness and/or duration, such that start is

more back and/or longer than lot, with start as [Aff:@] or [Aff:], and lot as [A]. In the

rhotic variety, these differences may be present or absent given that are redundant

with the presence of /r/, with start as [Affô] and lot as [Aff]. In my vowel set for the

rhotic variety, I gave priority to the realisations in which these differences are absent.

Furthermore, lot has undergone a historical sound change called lot-lengthening,

such that /A/ was changed to a centring diphthong /A@/ before word-final voiced

stops /b, d, dZ, g/. These lot words with /A@/ underwent the monophthongisation

process as with other centring diphthongs and are homophonous with start.

2.2.7.5.7 Others The treatment of offglides, length marks and extrapolations

of missing vowels is the same as in Section 2.2.7.1.2, Section 2.2.7.1.3 and Section
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2.2.7.1.4.

Keyword Phonemic Surface Extrapolated This thesis
non-rhotic Wells (1982d, pp. 503–515)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /æ/, /æ@/, /E@/ [æ] ∼ [æ:@], [E:@] [æ] ∼ [æ:@], [E:@] [æ] ∼ [ææ@], [EE@]

lot /A/, /A@/ [A]; [Aff:@] ∼ [Aff:] [A]; [Aff:@] ∼ [Aff:] [A]; [AA@] ∼ [AA]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /æ@/, /E@/ [æ:@], [E:@] [æ:@], [E:@] [ææ@], [EE@]

cloth /O@/ [Ofi:@] ∼ [Ofi:] [Ofi:@] ∼ [Ofi:] [OO@] ∼ [OO]

fleece /i/, /Ii/ [Ii], [1fli], [i:] [Ii], [1fli], [i:] [Ij]

face /eI/ – [eI] [ej]
palm /A@/ [Aff:@] ∼ [Aff:] [Aff:@] ∼ [Aff:] [AA@] ∼ [AA]

thought /O@/ [Ofi:@] ∼ [Ofi:] [Ofi:@] ∼ [Ofi:] [OO@] ∼ [OO]

goat /oU/ – [oU] [ow]
goose /u/, /Uu/, /Iu/ [Uu], [@fiu], [u:] [Uu], [@fiu], [u:] [Uw]

price /AI/ – [AI] [Aj]

choice /OI/ [OI], [3I] [OI], [3I] [Oj]

mouth /aU/ – [aU] [aw]
happy /i/, /Ii/ [Ii], [1fli], [i:] [Ii], [1fli], [i:] [Ij]

comma /@/ – [@] [@]

nurse /3/ [3~], [3I] [3~], [3I] [3ô]

near /I@/ [I:@] ∼ [I:] [I:@] ∼ [I:] [II@] ∼ [II]

square /E@/ [E:@] ∼ [E:] [E:@] ∼ [E:] [EE@] ∼ [EE]

start /A@/ [Aff:@] ∼ [Aff:] [Aff:@] ∼ [Aff:] [AA@] ∼ [AA]

north /O@/ [Ofi:@] ∼ [Ofi:] [Ofi:@] ∼ [Ofi:] [OO@] ∼ [OO]

force /O@/ [Ofi:@] ∼ [Ofi:] [Ofi:@] ∼ [Ofi:] [OO@] ∼ [OO]

cure /U@/ [U:@] ∼ [U:] [U:@] ∼ [U:] [UU@] ∼ [UU]

letter /@/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [3~] [3ô]

nearer (near) – – [I:ô] [IIô]

mary (square) – – [E:ô] [EEô]

safari (start) – – [Aff:ô] [AAô]

aura (north) – – [Ofi:ô] [OOô]

oral (force) – – [Ofi:ô] [OOô]

curie (cure) – – [U:ô] [UUô]

lettering (letter) – – [@ô] [@ô]

Table 2.11: Vowel set: New York City – non-rhotic: “∼” denotes an allophonic
relationship
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Keyword Phonemic Surface Extrapolated This thesis
non-rhotic Wells (1982d, pp. 503–515)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /æ/, /æ@/, /E@/ [æ] ∼ [æ:@], [E:@] [æ] ∼ [æ:@], [E:@] [æ] ∼ [ææ@], [EE@]

lot /A/, /A@/ [Aff]; [Aff:@] ∼ [Aff:] [Aff]; [Aff:@] ∼ [Aff:] [A]; [AA@] ∼ [AA]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /æ@/, /E@/ [æ:@], [E:@] [æ:@], [E:@] [ææ@], [EE@]

cloth /O@/ [Ofl:@] ∼ [Ofl:] [Ofl:@] ∼ [Ofl:] [OO@] ∼ [OO]

fleece /i/, /Ii/ [Ii], [1fli], [i:] [Ii], [1fli], [i:] [Ij]

face /eI/ – [eI] [ej]
palm /A@/ [Aff:@] ∼ [Aff:] [Aff:@] ∼ [Aff:] [AA@] ∼ [AA]

thought /O@/ [Ofl:@] ∼ [Ofl:] [Ofl:@] ∼ [Ofl:] [OO@] ∼ [OO]

goat /oU/ – [oU] [ow]
goose /u/, /Uu/, /Iu/ [Uu], [@fiu], [u:] [Uu], [@fiu], [u:] [@w]

price /AI/ – [AI] [Aj]

choice /OI/ [OI], [3I] [OI], [3I] [Oj]

mouth /aU/ – [aU] [aw]
happy /i/, /Ii/ [Ii], [1fli], [i:] [Ii], [1fli], [i:] [Ij]

comma /@/ – [@] [@]

nurse /3ô/ [3~], [3I] [3~], [3I] [3ô]

near /I@ô/ [I:@ô] ∼ [I:ô] [I:@ô] ∼ [I:ô] [II@ô] ∼ [IIô]

square /E@ô/ [E:@ô] ∼ [E:ô] [E:@ô] ∼ [E:ô] [EE@ô] ∼ [EEô]

start /A@ô/, /Aô/ [Affô]; [Aff:@ô] ∼ [Aff:ô] [Affô]; [Aff:@ô] ∼ [Aff:ô] [Aô]; [AA@ô] ∼ [AAô]

north /O@ô/ [Ofl:@ô] ∼ [Ofl:ô] [Ofl:@ô] ∼ [Ofl:ô] [OO@ô] ∼ [OOô]

force /O@ô/ [Ofl:@ô] ∼ [Ofl:ô] [Ofl:@ô] ∼ [Ofl:ô] [OO@ô] ∼ [OOô]

cure /U@ô/ [U:@ô] ∼ [U:ô] [U:@ô] ∼ [U:ô] [UU@ô] ∼ [UUô]

letter /@ô/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [3~] [3ô]

nearer (near) – – [I:ô] [IIô]

mary (square) – – [E:ô] [EEô]

safari (start) – – [Affô], [Aff:ô] [Aô], [AAô]

aura (north) – – [Ofl:ô] [OOô]

oral (force) – – [Ofl:ô] [OOô]

curie (cure) – – [U:ô] [UUô]

lettering (letter) – – [@ô] [@ô]

Table 2.12: Vowel set: New York City – rhotic: “∼” denotes an allophonic relationship

2.2.7.6 Philadelphia

To determine an appropriate vowel set for the Philadelphian accent, I examined

Labov (2001), which describes the Philadelphia vowel system in the 1970s based

on case studies. Since the Philadelphian accented data being used in this thesis

are predominantly from Labov’s natural misunderstandings corpus (Labov, 2010b)
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which was collected mostly during the 1980s, the vowel system adopted for my vowel

set is chosen to be the 1970s’ system (as described by Labov (2001)) as opposed

to a more contemporary system (Prichard and Tamminga, 2012). Labov (2001)

primarily reported formant values without using an IPA representation; therefore, I

consulted with a linguist who has worked on Philadelphian phonetics and phonology

for further clarifications.10 Table 2.13 summarises the vowel system. The second

column contains a more narrow transcription based on the descriptions of Labov

(2001). The third column contains a simplified version of the second column using

a smaller set of IPA symbols. The final vowel set for the Philadelphian accent for

this thesis is listed in the final column. Some vowels were not described by Labov

(2001): they are the historical-/r/ vowels and their pre-vocalic equivalents, which I

assume to be the same as those in the General American vowel set. A majority of

the Philadelphian vowels are similar to those of General American, and the ones that

are different are discussed below.

2.2.7.6.1 TRAP–BATH The short ‘a’ vowel in trap and bath is reported to

have a lexical split (Labov, 1989). The short ‘a’ vowel is frequently realised as [æ@]

before the following consonants: [m, n, f, T] and [s], as well as in specific lexical

items, such as mad, glad and bad ; it is realised as [æ] elsewhere. In Labov’s (1989)

descriptions, the two realisations are tense and lax, which I indicated as being [æ@]

and [æ] respectively.

2.2.7.6.2 FACE face has two allophones. In the free environment (before no

consonants), it is realised as [eI]. In the checked environment (before a consonant),

it is realised like fleece but more retracted, and therefore a possible representation

could be [i
¯
I]. To avoid using diacritics for vowels, two alternative representations are

[iI] which ignores the retraction, or [II]/[I:] which assumes a lower vowel height. To
10I thank Dr. Kyle Gorman for his help with interpreting and translating Labov’s (2001) descrip-

tive summary of the vowel system using IPA, all errors remain mine.
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decide between these two simplified representations, [iI] and [II], we must consider

also the realisation of the fleece vowel, which is [i:]. After applying the offglide

treatment (see Section 2.2.7.1.2), fleece would be [ij], and similarly face could

either be [ij] or [Ij]. To avoid complete neutralisation with fleece, the checked

vowel for face is best represented as [II], and the offglide treatment as [Ij].

2.2.7.6.3 GOAT The realisation of goat differs in three environments, free (not

before a consonant), checked (before a consonant) and pre-lateral (before [l]). The

starting height of the goat vowel is mid-high in the free and checked environments.

In terms of frontness, the free vowel is as front as face in the free environment,

making [ø] an appropriate representation of the starting point. The checked vowel

is as front as foot, and therefore [8] would be an appropriate representation. The

ending-point of the free and checked vowels is assumed to be [U]. In summary, the

free vowel is realised as [øU], and the checked vowel is realised as [8U]. The pre-lateral

vowel is realised as that of thought, therefore [O:]. Since neither [ø] nor [8] have

been used in other accents, they are both simplified to [@], and goat is therefore

realised as [@U] in both free and checked positions.

2.2.7.6.4 GOOSE The realisation of goose differs in three environments, free

(before no consonants), checked (before a consonant) and pre-lateral (before [l]).

The starting-point of the goose vowel is high in all the environments. In terms

of frontness, the free vowel is as front as face in the free environment, making [y]

an appropriate representation of the starting point; the checked vowel is as front as

foot, and therefore [0] would be an appropriate representation. The ending-point of

the free and checked vowels is assumed to be [U]. To recap, the free vowel is realised

as [yU], and the checked vowel is realised as [0U]. The pre-lateral vowel is realised as

[u:].

Since [y] has not been used in other accents, the free vowel will be merged with
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the checked vowel so goose is realised as [0U] in both free and checked positions.

2.2.7.6.5 PRICE Similar to Canadian raising, price has two allophones. The

vowel would be realised as [5I] before a voiceless consonant, and [aI] elsewhere. To

avoid using a new symbol [5], [@] was used instead, and therefore [5I] was replaced

by [@I].

2.2.7.6.6 Others The treatments of offglides, length marks and extrapolations

of missing vowels are the same as in Section 2.2.7.1.2, Section 2.2.7.1.3 and Section

2.2.7.1.4.

2.2.7.7 Canada

I examined Wells (1982d, pp. 490–497) to determine an appropriate vowel set for

the Canadian accent (not the Newfoundland variety). I identified the modifications

I made to the phonemic vowel set by Wells (1982d, pp. 492–493). I utilised Wells’s

detailed discussion of the surface realisation of the accent and made modifications

similar to those made to the other accents for consistency. The final vowel set for

the Canadian accent for this thesis is listed in the final column of Table 2.14.

2.2.7.7.1 Canadian Raising The price and mouth vowels are underlyingly

/aI/ and /AU/, but they are realised as [@i] and [2U] respectively before a voiceless

consonant. This is commonly known as Canadian Raising. price has two realisa-

tions in the vowel set used for this thesis: [@i] before a voiceless consonant and [aI]

elsewhere; similarly mouth has [2U] before a voiceless consonant and [AU] elsewhere.

2.2.7.7.2 THOUGHT–CLOTH–LOT–PALM–START Most of the Cana-

dian accents have the same vowel for thought, cloth, lot, palm and start.

Phonetically this vowel has the quality [A]. It may be lightly rounded [6], but not
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Keyword Narrow Broad This thesis
Labov (2001) and Labov (1989)

kit [I] [I] [I]

dress [E] [E] [E]

trap [æ] ∼ [æ@] [æ] ∼ [æ@] [æ] ∼ [æ@]

lot [A:] [A:] [AA]

strut [2] [2] [2]

foot [U] [U] [U]

bath [æ] ∼ [æ@] [æ] ∼ [æ@] [æ] ∼ [æ@]

cloth [O:] [O:] [OO]

fleece [i:] [i:] [ij]
face [eI] ∼ [i

¯
I] [eI] ∼ [I:] [ej] ∼ [Ij]

palm [A:] [A:] [AA]

thought [O:] [O:] [OO]

goat [øU] ∼ [8U] ∼ [O:] [@U] ∼ [O:] [@w] ∼ [OO]

goose [yU] ∼ [0U] ∼ [u:] [0U] ∼ [u:] [0w] ∼ [uw]

price [aI] ∼ [5I] [aI] ∼ [5I] [aj] ∼ [@j]

choice [OI] [OI] [Oj]

mouth [aU] [aU] [aw]
happy [i] [i] [i]
comma [@] [@] [@]

nurse – – [33ô]

near – – [Iô]

square – – [Eô]

start – – [AAô]

north – – [OOô]

force – – [OOô]

cure – – [Uô]

letter – – [@ô]

mirror (kit) – – [Iô]

merry (dress) – – [Eô]

current (nurse) – – [33ô]

nearer (near) – – [Iô]

mary (square) – – [Eô]

safari (start) – – [AAô]

aura (north) – – [OOô]

oral (force) – – [OOô]

curie (cure) – – [Uô]

lettering (letter) – – [@ô]

Table 2.13: Vowel set: Philadelphia: “∼” denotes an allophonic relationship
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in start, and long. I will ignore the lightly rounded variant in my vowel set, and

instead adopt a long [A], namely [A:] for the five reference vowels.

2.2.7.7.3 Others The treatments of offglides, length marks and extrapolations

of missing vowels are the same as in Section 2.2.7.1.2, Section 2.2.7.1.3 and Section

2.2.7.1.4. It is worth noting that the treatment of offglides was applied to both of the

realisations of the price vowel, [@i] and [aI], despite their difference in the vowel qual-

ity of the ending vowel; concretely, they are treated as [@j] and [aj] respectively. For

goat, the underlying monophthong /o/ is treated as being realised as a diphthong

[oU], following the same argument in Section 2.2.7.2.1. To maintain consistency with

GenAm, the following vowels are treated as being long: nurse, north, and force,

along with their pre-vocalic counterparts; similarly fleece and goose are treated

as being long following with offglides [j] and [w] respectively.

2.2.7.8 Australia

I examined Wells (1982d, pp. 592–605) to determine an appropriate vowel set for

the Australian accent. I identified and discussed the modifications I made to the

phonemic vowel set by Wells (1982d, p. 596). I utilised Wells’s detailed discussion of

the surface realisation of the accent and made modifications similar to those made

to the other accents for consistency. The surface realisations are summarised in the

third column in Table 2.15. The final vowel set for the Australian accent for this

thesis is listed in the final column in Table 2.15.

The Australian accent can be divided into three main groups – Cultivated, General

and Broad (Wells, 1982d, pp. 592–605). Phonetically they differ mainly in the quality

of the closing diphthongs, namely, fleece, goose, face, goat, price and mouth.

In addition to these three subgroups, Australian English has been found to have high

variability in the realisations of the vowels, especially of the closing diphthongs (Wells,

1982d, p. 596) which poses a challenge for determining their underlying and surface
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 492–493)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /æ/ – [æ] [æ]

lot /A/ [A:] [A:] [AA]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /æ/ – [æ] [æ]

cloth /A/ [A:] [A:] [AA]

fleece /i/ – [i:] [ij]
face /eI/ – [eI] [ej]
palm /A/ [A:] [A:] [AA]

thought /A/ [A:] [A:] [AA]

goat /o/ – [oU] [ow]
goose /u/ – [u:] [uw]
price /aI/ [aI] ∼ [@i] [aI] ∼ [@i] [aj] ∼ [@j]

choice /OI/ – [OI] [Oj]

mouth /AU/ [AU] ∼ [2U] [AU] ∼ [2U] [Aw] ∼ [2w]

happy /i/ – [i] [i]
comma /@/ – [@] [@]

nurse /3ô/ [3~] [3~] [33ô]

near /Iô/ – [Iô] [Iô]

square /Eô/ – [Eô] [Eô]

start /Aô/ [Aff:ô], [a
¯
:ô] [A:ô] [AAô]

north /oô/ – [o:ô] [ooô]

force /oô/ – [o:ô] [ooô]

cure /Uô/ – [Uô] [Uô]

letter /@ô/ [Ä] [Ä] [@ô]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [3:ô] [33ô]

nearer (near) – – [Iô] [Iô]

mary (square) – – [Eô] [Eô]

safari (start) – – [A:ô] [AAô]

aura (north) – – [o:ô] [ooô]

oral (force) – – [o:ô] [ooô]

curie (cure) – – [Uô] [Uô]

lettering (letter) – – [@ô] [@ô]

Table 2.14: Vowel set: Canada: “∼” denotes an allophonic relationship
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forms. For simplicity, I will adopt only the General Australian accent group.

2.2.7.8.1 FLEECE and GOOSE fleece and goose are phonemically /i:/

and /u:/ respectively. Phonetically, fleece and goose share the same starting-

point. fleece is realised as [1fli] or in the notation of Wells (1982d, p. 534) [Ii]; while

goose is realised as [1flW] or in the notation of Wells (1982d, p. 534) [IW]. goose

has another surface realisation [U0], but this is ignored for simplicity. To avoid the

use of diacritics with vowels, [1fl] is substituted with a vowel of similar quality. Two

possibilities for the substitution are [1] and [I]. [1] differs from [1fl] in terms of its height

– [1fl] is near-close, while [1] is close. [I] differs from [1fl] in terms of its backness – [1fl] is

central while [I] is near-front. [I] was chosen over [1] as a substitute starting vowel for

fleece and goose; this was motivated by the fact that [I] was already used as the

kit vowel across many accents, while [1] was not used at all, and therefore using the

latter option would introduce sparsity issues in subsequent analyses. In summary,

the vowels for fleece and goose were simplified to [Ii] and [IW] respectively. Since

the phonemic representation of happy was identical to that of fleece, the surface

realisation of happy was treated as that of fleece.

2.2.7.8.2 STRUT and START strut is realised phonetically as [a
¯
]. start

has the same vowel quality as strut but it is phonetically long [a
¯
:] (Wells, 1982d,

p. 599). The quality of this vowel is retracted as indicated by the diacritic [x
¯
] (note

that [x] is merely a placeholder for the diacritic). For simplicity, this diacritic is

ignored for my vowel set, yielding [a] and [a:]. Since bath and palm have the same

phonemic representation as start, the surface realisation is applied equally to all

three vowels.

2.2.7.8.3 NEAR, SQUARE and CURE Phonemically, near has the follow-

ing representations: /I@/, /i:@/ and /i:/, and cure has /U@/, /O:/, /u:@/ and /u:/.
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nearer has the realisation [I:ô] and curie has two realisations, [U@ô] and [U:ô]. For

simplicity, the first form is chosen to be the surface realisation, with [I@] for near,

[I:ô] for nearer, [U@] for cure and [U@ô] for curie. Similarly to nearer, mary

(pre-vocalic square) has a longer monophthongal realisation [e:ô].

2.2.7.8.4 Others The treatments of offglides, length marks and extrapolations

of missing vowels are the same as in Section 2.2.7.1.2, Section 2.2.7.1.3 and Section

2.2.7.1.4. It is worth noting that the treatment of offglides was applied to the fol-

lowing vowels: fleece, face, goat, goose, price, choice and mouth. This

treatment of offglides effectively simplified the ending-point of these vowels; for in-

stance, the ending points of fleece, face and price are [i], [I] and [Ifl] respectively,

and the offglide treatment would convert them to [j]. Similarly, the ending-points

of goose, goat and mouth were [W], [0], and [o] respectively, and the offglide

treatment would convert them to [w]. kit and trap are both reported to be closer

than those in RP, and are therefore [Ifi] and [æfi ] respectively, but these diacritics were

ignored for simplicity.

2.2.7.9 Others

Six other accent groups were tabulated: New Zealand, South Africa, India, Caribbean,

Ireland and Scotland. However, since together they cover only ≈ 60 data points which

is ≈ 1% of the corpus, I will only discuss them together briefly in this section.

2.2.7.9.1 New Zealand I examined Wells (1982d, pp. 605–610) in order to de-

termine an appropriate vowel set for the New Zealand accent. Table 2.16 contains

a summary of the vowel set for this accent. I tabulated the phonemic vowel set by

Wells (1982d, p. 609) in the second column. I utilised Wells’s detailed discussion of

the surface realisation of the accent which is summarised in the third column of the

table. I completed the vowel set by extrapolation from the surface and phonemic

159



Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 596–600)

kit /I/ [Ifi] [Ifi] [I]

dress /e/ [e] [e] [e]
trap /æ/ [æfi ] [æfi ] [æ]

lot /6/ – [6] [6]

strut /2/ [a
¯
] [a

¯
] [a]

foot /U/ – [U] [U]

bath /a:/ – [a
¯
:] [aa]

cloth /6/ – [6] [6]

fleece /i:/ [1fli] [1fli] [Ij]

face /2I/ [2I] [2I] [2j]

palm /a:/ [a
¯
:] [a

¯
:] [aa]

thought /O:/ – [O:] [OO]

goat /2U/ [20] [20] [2w]

goose /u:/ [1W], [U0] [1W], [U0] [Iw]

price /AI/ [6Ifl] [6Ifl] [6j]

choice /OI/ – [OI] [Oj]

mouth /æU/ [æo] [æo] [æw]

happy /i:/ – [1fli] [Ij]

comma /@/ – [@] [@]

nurse /3:/ – [3:] [33]

near /I@/, /i:@/, /i:/ – [I@], [i:@], [i:] [I@]

square /e@/ – [e@] [e@]

start /a:/ [a
¯
:] [a

¯
:] [aa]

north /O:/ – [O:] [OO]

force /O:/ – [O:] [OO]

cure /U@/, /O:/, /u:@/, /u:/ – [U@], [O:], [u:@], [u:] [U@]

letter /@/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [eô] [eô]

current (nurse) – – [3:ô] [33ô]

nearer (near) – [I:ô] [I:ô] [IIô]

mary (square) – [e:ô] [e:ô] [eeô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [O:ô] [OOô]

oral (force) – – [O:ô] [OOô]

curie (cure) – [U@ô], [U:ô] [U@ô], [U:ô] [U@ô]

lettering (letter) – – [@ô] [@ô]

Table 2.15: Vowel set: Australia
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forms (cf. Section 2.2.7.1.4), as tabulated in the fourth column. Finally, I made

similar modifications as those made to the other accents for consistency (cf. Section

2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the

final column.

Wells (1982d, pp. 605–610) described the general New Zealand vowel system and

a few variations in a broad New Zealand accent. Since these variations were limited

to a few vowel types, namely fleece, goose and nurse, they were ignored and

are therefore not reflected in the table.

The lateral /l/ has a substantial influence on any preceding vowels, in particular,

goat and goose. goose is realised as [u:] before /l/ and as [0:] elsewhere. goat

is realised as [6U] before /l/ and as [2U] elsewhere.

dress and trap are realised more closely than that of in RP, with [e] for dress

and [E] for trap. dress can be realised even closer than [e], yielding [I]. kit is

realised more centrally and lowered [1fl]. For simplicity, I assumed kit has no such

centralised realisation and remained [I] so to maintain a contrast between dress and

kit, I simplified the possible realisations of dress to only [e], and not [I].

nurse has the realisation [œ̈fl :]. To avoid using diacritics, and the symbol [œ],

I chose [3:] to be its substitute. In terms of openness and backness, [3] is a good

candidate, since the diacritics denote that [œ] should be centralised and lowered,

although the rounded quality is not captured and is therefore ignored.

2.2.7.9.2 South Africa I examined Wells (1982d, pp. 610–622) to determine an

appropriate vowel set for the South African accent. Table 2.17 contains a summary

of the vowel set for this accent. I tabulated the phonemic vowel set by Wells (1982d,

p. 616) in the second column. I utilised Wells’s detailed discussion of the surface

realisation of the accent, which is summarised in the third column of the table.

I completed the vowel set by extrapolation from the surface and phonemic forms

(cf. Section 2.2.7.1.4), which is tabulated in the fourth column. Finally, I made
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 605–610)

kit /@/ [1fl] [1fl] [I]

dress /e/ [e], [I], [I@] [e], [I], [I@] [e]
trap /æ/ [E] [E] [E]

lot /6/ – [6] [6]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /a:/ – [a:] [aa]
cloth /6/ – [6] [6]

fleece /i:/ [i:] [ij]
face /2I/ – [2I] [2j]

palm /a:/ – [a:] [aa]
thought /O:/ – [O:] [OO]

goat /2U/ [2U] ∼ [6U] [2U] ∼ [6U] [2w] ∼ [6w]

goose /u:/ [0:], [i0] ∼ [u:] [0:], [i0] ∼ [u:] [0w] ∼ [uw]

price /AI/ – [AI] [Aj]

choice /OI/ – [OI] [Oj]

mouth /æU/ – [æU] [æw]

happy /i:/ – [i:] [ij]
comma /@/ – [@] [@]

nurse /3:/ [œ̈fl :] [œ̈fl :] [33]

near /i@/, /i:@/, /i:/, /e@/ [i@] [i@] [i@]

square /e@/ [e@], [I@] [e@], [I@] [e@]

start /a:/ – [a:] [aa]
north /O:/ – [O:] [OO]

force /O:/ – [O:] [OO]

cure /U@/, /u:@/, /u:/, /O:/ – [U@], [u:@], [u:], [O:] [U@]

letter /@/ – [@] [@]

mirror (kit) – – [@ô] [@ô]

merry (dress) – – [eô ], [Iô ], [I@ô] [eô]

current (nurse) – – [œ̈fl :ô] [33ô]

nearer (near) – – [i@ô] [i@ô]

mary (square) – – [e@ô ], [I@ô] [e@ô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [O:ô] [OOô]

oral (force) – – [O:ô] [OOô]

curie (cure) – – [U@ô], [u:@ô], [u:ô], [O:ô] [U@ô]

lettering (letter) – – [@ô] [@ô]

Table 2.16: Vowel set: New Zealand: “∼” denotes an allophonic relationship
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modifications similar to those made to the other accents for consistency (cf. Section

2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this accent as adopted in this

thesis is tabulated in the final column.

This accent has two sub-accents, broad and conservative, a distinction denoted

by “|” in the table: the vowels on the left of the bar are broad and those on the right

are conservative. For the transcriptions of the corpus, I will assume the conservative

accent unless indicated otherwise by the reported transcriptions and demographics.

kit has two sets of realisations. The first set is either [I] or [i], when the vowel

is in a stressed syllable and before or after a velar consonant (e.g. kiss and lick), or

before /S, tS, dZ/ (e.g. fish, ditch and bridge) or after /h/ (e.g. hit). The second set

is either [̈I] or [@] in the complementary set of environments in the first set. They

are best treated as allophones of the same phoneme. [̈I] maybe replaced by [@] in

stressed syllables, e.g. dinner has the realisation ["d@n@], and therefore I simplified

the second set to only [@]. For simplicity, I chose only [I] in the first set.

fleece and goose are monophthongs, unlike accents which have developed

diphthongization, such as Southern England, Australia and New Zealand, and I

therefore did not apply the offglide treatment which converts the second element to

[j] and [w] respectively.

2.2.7.9.3 Scotland I examined Wells (1982c, pp. 395–408) in order to determine

an appropriate vowel set for the Scottish accent. Table 2.18 contains a summary of

the vowel set for this accent. I tabulated the phonemic vowel set by Wells (1982c,

p. 399) in the second column. I utilised Wells’s detailed discussion of the surface

realisation of the accent, as summarised in the third column of the table. I completed

the vowel set by extrapolation from the surface and phonemic forms (cf. Section

2.2.7.1.4), which is tabulated in the fourth column. Finally, I made modifications

similar to those made to the other accents for consistency (cf. Section 2.2.7.1.2 and

Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the final column.
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 612–616)

kit /I/, /@/ [̈I, @] ∼ [I, i] [̈I, @] ∼ [I, i] [@] ∼ [I]

dress /e/ [e] | [E] [e] | [E] [e] | [E]

trap /æ/ [E] | [æ] [E] | [æ] [E] | [æ]

lot /6/ – [6] [6]

strut /2/ – [2] [2]

foot /U/ – [U] [U]

bath /A:/ [Aff:] | [A:] [Aff:] | [A:] [AA]

cloth – – [6] [6]

fleece /i:/ – [i:] [ii]
face /@I/ [2I], [2e] | [ëI], [@I] [2I], [2e] | [ëI], [@I] [2j] | [@j]

palm /A:/ [Aff:] | [A:] [Aff:] | [A:] [AA]

thought /O:/ [o:] [o:] [oo]
goat /@U/ [2U], [2:] | [@U] [2U], [2:] | [@U] [2w] | [@w]

goose /u:/ [0:] [0:] [00]

price /aI/ [6I] | [a
¯
I] [6I] | [a

¯
I] [6j] | [aj]

choice /OI/ – [oI] [oj]
mouth /aU/ [æU] | [a

¯
U] [æU] | [a

¯
U] [æw] | [aw]

happy – [Ifi], [i] [Ifi], [i] [i]
comma /@/ – [@] [@]

nurse /3:/ [ö:] | [3:] [ö:] | [3:] [33]

near /I@/ – [I@] [I@]

square /e@/ [e:] | [E@] [e:] | [E@] [ee] | [E@]

start /A:/ [Aff:] | [A:] [Aff:] | [A:] [AA]

north /O:/ [o:] [o:] [oo]
force /O:/ [o:] [o:] [oo]
cure /U@/ – [U@] [U@]

letter /@/ – [@] [@]

mirror (kit) – – [̈Iô , @ô] ∼ [Iô , iô] [@ô] ∼ [Iô]

merry (dress) – – [eô] | [Eô] [eô] | [Eô]

current (nurse) – – [ö:ô] | [3:ô] [33ô]

nearer (near) – – [I@ô] [I@ô]

mary (square) – – [e:ô] | [E@ô] [eeô] | [E@ô]

safari (start) – – [Aff:ô] | [A:ô] [AAô]

aura (north) – – [o:ô] [ooô]

oral (force) – – [o:ô] [ooô]

curie (cure) – – [U@ô] [U@ô]

lettering (letter) – – [@ô] [@ô]

Table 2.17: Vowel set: South African: “|” divides two sub-accents: the left is broad
and the right is conservative; “∼” denotes an allophonic relationship.
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Wells (1982c, pp. 395–408) described a typical Scottish accent while mentioning

specific differences with accents in cities such as Glasgow, and with educated speech.

The accent adopted for the vowel system is the typical Scottish accent.

In the adopted system, I assumed that there are two mergers lot–thought

([O]), and trap–palm ([a]). The rule known as Aitken’s Law was applied to all

monophthongs except strut, kit and [@]; this means that all monophthongs are

long if they are followed either by a word boundary, morpheme boundary, a voiced

fricative, or /r/, and otherwise they are short. price has two allophonic realisations,

[2i] ∼ [ae]: it is realised as [ae] when it is in the same environment as Aitken’s

Law or if the vowel is in syllable-final positions within a word, and it is realised as

[2i] elsewhere. The lengthened monophthongs [i:] and [0:] were assumed to have no

diphthongisation, given that they were lengthened as per Aitken’s Law, and therefore

I did not apply the offglide treatment which would convert the second element to [j]

and [w] respectively.

2.2.7.9.4 Ireland I examined Wells (1982c, pp. 417–428) in order to determine

an appropriate vowel set for the Irish accent and Table 2.19 contains a summary of the

vowel set for this accent. I tabulated the phonemic vowel set by Wells (1982c, p. 419)

in the second column. I utilised Wells’s detailed discussion of the surface realisation

of the accent, which is summarised in the third column of the table. I completed

the vowel set by extrapolation from the surface and phonemic forms (cf. Section

2.2.7.1.4), which is tabulated in the fourth column. Finally, I made modifications

similar to those made to the other accents for consistency (cf. Section 2.2.7.1.2 and

Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the final column.

Wells (1982c, pp. 417–428) described a typical Irish accent while also mentioning

specific differences with the Dublin accent. The accent adopted for the vowel system

is the typical Irish accent, and other Irish accents were ignored. strut and foot

are reported to have free variation between opposition and neutralisation. For the
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982c, pp. 399–408)

kit /I/ [I] [I] [I]

dress /E/ [Efi] [Efi] [E]

trap /a/ [a] [a] [a]
lot /O/ [O] [O] [O]

strut /2/ [2ff] [2ff] [2]

foot /u/ [0], [Y] [0], [Y] [0]

bath /a/ [a
¯
] [a

¯
] [a]

cloth /O/ [O] [O] [O]

fleece /i/ [i] [i] [i]
face /e/ [e] [e] [e]
palm /a/ [a] [a] [a]

thought /O/ [O] [O] [O]

goat /o/ [o], [oU] [o], [oU] [o]
goose /u/ [0], [Y] [0], [Y] [0]

price /ae/, /2i/ [2i] ∼ [ae] [2i] ∼ [ae] [2j] ∼ [aj]

choice /6I/ [6I], [OI] [6I], [OI] [6j]

mouth /2u/ [uff] [uff] [u]
happy /e/, /I/, /i/ – [e:], [I], [i:] [ee]
comma /2/ – [2ff] [2]

nurse /3ô/ – [3:ô] [33ô]

near /iô/ – [i:ô] [iiô]

square /eô/ – [e:ô] [eeô]

start /aô/ – [a:ô] [aaô]

north /Oô/ – [O:ô] [OOô]

force /oô/ – [o:ô], [oUô] [ooô]

cure /uô/ – [0:ô] [00ô]

letter /@ô/ – [@ô] [@ô]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Efi:ô] [EEô]

current (nurse) – – [3:ô] [33ô]

nearer (near) – – [i:ô] [iiô]

mary (square) – – [e:ô] [eeô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [O:ô] [OOô]

oral (force) – – [o:ô], [oUô] [ooô]

curie (cure) – – [0:ô] [00ô]

lettering (letter) – – [@ô] [@ô]

Table 2.18: Vowel set: Scotland: “∼” denotes an allophonic relationship; Aitken’s law
is applied to all monophthongs except strut, kit and [@].
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vowel set, I assumed that this contrast is not neutralised. Of the many possible

realisations of strut, [8], [Ö], [7], [@], [@] was chosen because it was a symbol used

by other vowel sets.

2.2.7.9.5 India I examined Wells (1982d, pp. 624–632) to determine an appro-

priate vowel set for the Indian accent. Table 2.20 contains a summary of the vowel

set for this accent. I tabulated the phonemic vowel set by Wells (1982d, p. 626) in

the second column. I utilised Wells’s detailed discussion of the surface realisation

of the accent, which is summarised in the third column of the table. I completed

the vowel set by extrapolation from the surface and phonemic forms (cf. Section

2.2.7.1.4), which is tabulated in the fourth column. Finally, I made modifications

similar to those made to the other accents for consistency (cf. Section 2.2.7.1.2 and

Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the final column.

The vowel system of Indian English is quite similar to that of RP but with the

following differences. Firstly, the phonemic status is dubious for the two contrasts of

/2/ vs. /@/ , and /6/ vs. /O/. Because these contrasts are dubious, for the variable

realisation of strut, [2] and [@] are simplified to only [2]. Similarly I assume /O/

does not exist this system, which means both cloth and thought are phonemically

/6/, and north is phonemically /6ô/.

Secondly, the nurse vowel is not phonemically distinct and it could pair with

/@ô/ or /2ô/, this was simplified to only /@ô/. Thirdly, length distinctions are not

always consistent; for example, it is not clear if cloth and thought are different in

length or not. I decided to apply the same length distinctions from RP to this accent,

which allowed me to determine whether a vowel is long or not for cases when their

surface realisations were not described in Wells (1982d, pp. 624–632); for example,

goose, start, nurse, thought and north are treated as long, while cloth

is treated as short. Fourthly, face and goat are monophthongs. Finally, strong

vowels are commonly used in weak syllables; for instance, different ["dIfôEnt] with [E]
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982c, pp. 417–428)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /æ/ [a] [a] [a]
lot /6/ [A], [Aff] [A], [Aff] [A]

strut /2/ [8], [Ö], [7], [@] [8], [Ö], [7], [@] [@]

foot /U/ – [U] [U]

bath /æ/,/a:/ [æ], [a:] [æ], [a:] [æ]

cloth /6/,/O:/ [A], [A:] [A], [A:] [A]

fleece /i:/ [i:], [Ii] [i:], [Ii] [ij]
face /e:/ [e:] [e:] [ee]
palm /a:/ [a:] [a:] [aa]

thought /O:/ [A:] [A:] [AA]

goat /o:/ [o:] [o:] [oo]
goose /u:/ [u:], [Uu] [u:], [Uu] [uw]
price /aI/ [@I] [@I] [@j]

choice /OI/ [@I] [@I] [@j]

mouth /aU/ – [aU] [aw]
happy /i:/ [i],[Ifi] [i],[Ifi] [i]
comma /@/ – [@] [@]

nurse /2ô/,/Eô/ – [2ô], [Eô] [2ô]

near /i:ô/ – [i:ô] [ijô]

square /e:ô/ – [e:ô] [eeô]

start /a:ô/ – [a:ô] [aaô]

north /O:ô/ – [O:ô] [OOô]

force /o:ô/ – [o:ô] [ooô]

cure /u:ô/ – [u:ô] [uwô]

letter /@ô/ – [@ô] [@ô]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [8:ô], [Ö :ô], [7:ô], [@:ô] [@@ô]

nearer (near) – – [i:ô] [ijô]

mary (square) – – [e:ô] [eeô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [O:ô] [OOô]

oral (force) – – [o:ô] [ooô]

curie (cure) – – [u:ô] [uwô]

lettering (letter) – – [@ôh] [@ô]

Table 2.19: Vowel set: Ireland

instead of [@].
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 624-632)

kit /I/ [I] [I] [I]

dress /E/ – [E] [E]

trap /æ/ – [æ] [æ]

lot /6/ [6] [6] [6]

strut – [2], [@] [2], [@] [2]

foot /U/ – [U] [U]

bath /a/, /æ/ – [a], [æ] [a]
cloth /6/, /O/ – [6], [O] [6]

fleece /i/ [i:] [i:] [ij]
face /e/ [e:] [e:] [ee]
palm /a/ – [a] [a]

thought /O/, /6/ – [O:], [6:] [66]

goat /o/ [o:] [o:] [oo]
goose /u/ – [u:] [uw]
price /aI/ [2I] [2I] [2j]

choice /OI/ – [OI] [Oj]

mouth /aU/ [2U] [2U] [2w]

happy /I/, /i/ [i:] [i:] [ij]
comma /a/, /@/ – [a], [@] [a], [@]

nurse /@ô/, /2ô/ – [@:ô], [2:ô] [@@ô]

near /I@/ – [I@] [I@]

square /e@/ [E:] [E:] [EE]

start /A/ – [A:] [AA]

north /6/, /O/ – [6:], [O:] [66]

force /o/ [o:] [o:] [oo]
cure /U@/ – [U@] [U@]

letter /@/ – [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [@:ô], [2:ô] [@@ô]

nearer (near) /I@ô/ [i:ô] [i:ô] [ijô]

mary (square) /e@ô/ [e:ô] [e:ô] [eeô]

safari (start) /Aô/ – [A:ô] [AAô]

aura (north) /6ô/, /Oô/ – [6:ô], [O:ô] [66ô]

oral (force) /oô/ – [o:ô] [ooô]

curie (cure) /U@ô/ – [U@ô] [U@ô]

lettering (letter) /@ô/ – [@ô] [@ô]

Table 2.20: Vowel set: India
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2.2.7.9.6 Caribbean There are five regional accents in the corpus for the Caribbean

group: Jamaica, Trinidad, Guyana, Barbados and the Leewards. Some of these ac-

cents have two sub-accents, acrolectal and basilectal, and this distinction is denoted

by “|” in the tables; the vowels on the left of the bar are basilectal and those on the

right are acrolectal. I will assume the acrolectal accent for the transcriptions of the

corpus, unless indicated otherwise by the reported transcriptions and demographics.

2.2.7.9.6.1 Caribbean – Jamaica I examined Wells (1982d, pp. 574–577)

in order to determine an appropriate vowel set for the Jamaican accent. Table 2.21

contains a summary of the vowel set for this accent. I tabulated the phonemic

vowel set by Wells (1982d, p. 576) in the second column. I utilised Wells’s detailed

discussion of the surface realisation of the accent, which is summarised in the third

column of the table. I completed the vowel set by extrapolation from the surface

and phonemic forms (cf. Section 2.2.7.1.4), which is tabulated in the fourth column.

Finally, I made modifications similar to those made to other accents for consistency

(cf. Section 2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this thesis is

tabulated in the final column.

Rhoticity status within the accent is complex, and varies according to the sub-

accents. Wells (1982d, pp. 574–577) discussed three sub-accents, acrolectal, mesolec-

tal, and basilectal. For simplicity, I will ignore the mesolectal accent. In the basilec-

tal accent, the /r/ in /r/-vowels is realised phonetically in near, square, start,

north, force and cure, but not in letter, i.e. except in weak syllables. Fur-

thermore, this is conditioned by its following environment. /r/ is not realised before

a consonant in the same morpheme, e.g. it is not realised in beard, but it is realised

in near. This allophonic relationship is denoted with “∼” in the table, such as [iEô]

∼ [iE] for near and square, [aaô] ∼ [aa] for start and north, and [uoô] ∼ [uo]

for force and cure. For simplicity in the final vowel set, any vowels containing [5]

were not chosen, and [Ö] was simplified as [O] with the diacritic removed.
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 574–577)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /a/ – [a] [a]
lot /a/ | /6/ [a] | [6] [a] | [6] [a] | [6]

strut /2/ [Ö] [Ö] [O]

foot /U/ – [U] [U]

bath /a:/ – [a:] [aa]
cloth /a:/ | /O:/ – [a:] | [O:] [aa] | [OO]

fleece /i:/ – [i:] [ij]
face /e:/ [iE] | [e:] [iE] | [e:] [iE] | [ee]

palm /a:/ – [a:] [aa]
thought /a:/ | /O:/ – [a:] | [O:] [aa] | [OO]

goat /o:/ [uo] | [o:] [uo] | [o:] [uo] | [oo]

goose /u:/ – [u:] [uw]
price /aI/ [aI] [aI] [aj]
choice /aI/ | /OI/ – [aI] | [OI] [aj] | [Oj]

mouth /OU/ – [OU] [Ow]

happy – [I], [i] [I], [i] [I], [i]

comma /a/ | /@/ [5] | – [5] | [@] [@]

nurse /2/ | /3:ô/ [Ö] | [3~:] [Ö] | [3~:] [O] | [33ô]

near /e:ô/ [iEô] ∼ [iE] | [e:ô] [iEô] ∼ [iE] | [e:ô] [iEô] ∼ [iE] | [eeô]

square /e:ô/ [iEô] ∼ [iE] | [e:ô] [iEô] ∼ [iE] | [e:ô] [iEô] ∼ [iE] | [eeô]

start /a:ô/, /a:/ [a:ô] ∼ [a:] | – [a:ô] ∼ [a:] | [a:ô] [aaô] ∼ [aa] | [aaô]

north /a:ô/, /a:/ | /O:ô/, /O:/ [a:ô] ∼ [a:] | – [a:ô] ∼ [a:] | [O:ô], [O:] [aaô] ∼ [aa] | [OOô]

force /o:ô/ [uoô] ∼ [uo] | – [uoô] ∼ [uo] | [uoô] [uoô] ∼ [uo] | [uoô]

cure /o:ô/ [uoô] ∼ [uo] | – [uoô] ∼ [uo] | [uoô] [uoô] ∼ [uo] | [uoô]

letter /a/ | /@/ [5] | [@] [5] | [@] [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [Öô] | [3~:] [Oô] | [33ô]

nearer (near) – – [iEô] | [e:ô] [iEô] | [eeô]

mary (square) – – [iEô] | [e:ô] [iEô] | [eeô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [a:ô] | [O:ô] [aaô] | [OOô]

oral (force) – – [uoô] [uoô]

curie (cure) – – [uoô] [uoô]

lettering (letter) – – [5ô] | [@ô] [@ô]

Table 2.21: Vowel set: Caribbean – Jamaica: “|” divides two sub-accents: the left is
basilectal and the right is acrolectal; “∼” denotes an allophonic relationship.

2.2.7.9.6.2 Caribbean – Trinidad I examined Wells (1982d, pp. 577–580)in

order to determine an appropriate vowel set for the Trinidadian accent. Table 2.22

contains a summary of the vowel set for this accent. I tabulated the phonemic

vowel set by Wells (1982d, p. 580) in the second column. I utilised Wells’s detailed

discussion of the surface realisation of the accent, which is summarised in the third

column of the table. I completed the vowel set by extrapolation from the surface
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and phonemic forms (cf. Section 2.2.7.1.4), which is tabulated in the fourth column.

Finally, I made modifications similar to those made to other accents for consistency

(cf. Section 2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this thesis is

tabulated in the final column.

The accent is non-rhotic. For simplicity, any vowels containing [5] were not chosen

for the final vowel set, and [Ö] was simplified as [O] with the diacritic removed and

similarly [a
¯
] was simplified as [a].

2.2.7.9.6.3 Caribbean – Guyana I examined Wells (1982d, pp. 581–583)

to determine an appropriate vowel set for the Guyanese accent. Table 2.23 contains

a summary of the vowel set for this accent. I tabulated the phonemic vowel set by

Wells (1982d, p. 582) in the second column. I utilised Wells’s detailed discussion of

the surface realisation of the accent, which is summarised in the third column of the

table. I completed the vowel set by extrapolation from the surface and phonemic

forms (cf. Section 2.2.7.1.4), which is tabulated in the fourth column. Finally, I made

modifications similar to those made the other accents for consistency (cf. Section

2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the

final column.

2.2.7.9.6.4 Caribbean – Barbados I examined Wells (1982d, pp. 583–585)

to determine an appropriate vowel set for the Barbadian accent. Table 2.24 contains

a summary of the vowel set for this accent. I tabulated the phonemic vowel set by

Wells (1982d, p. 585) in the second column. I utilised Wells’s detailed discussion of

the surface realisation of the accent, which is summarised in the third column of the

table. I completed the vowel set by extrapolation from the surface and phonemic

forms (cf. Section 2.2.7.1.4), which is tabulated in the fourth column. Finally, I made

modifications similar to those made to the other accents for consistency (cf. Section

2.2.7.1.2 and Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 577–580)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /a/ – [a
¯
] [a]

lot /6/ [Ö] [Ö] [O]

strut /6/ | /2/ [Ö] | [@] [Ö] | [@] [O] | [@]

foot /U/ – [U] [U]

bath /a/ | /A/ – [a
¯
] | [A] [a] | [A]

cloth /O/ | /6/ [O:] | [Ö:] [O:] | [Ö:] [OO]

fleece /i/ – [i] [i]
face /e/ – [e] [e]
palm /a/ | /A/ [a

¯
] | [A] [a

¯
] | [A] [a] | [A]

thought /6/ | /O/ [Ö:] | [O:] [Ö:] | [O:] [OO]

goat /o/ – [o] [o]
goose /u/ – [u] [u]
price /aI/ – [aI] [aj]
choice /OI/ – [OI] [Oj]

mouth /OU/ – [OU] [Ow]

happy /i/ – [i] [i]
comma /a/ | /@/ – [a

¯
] | [@] [a] | [@]

nurse /6/ | /3/ [Ö] | [3] [Ö] | [3] [O] | [3]

near /e@/ [ia] [ia] [ia]
square /e@/ [ia] [ia] [ia]
start /a/ | /A/ [a

¯
] | [A] [a

¯
] | [A] [a] | [A]

north /6/ | /O/ [Ö:] | [O:] [Ö:] | [O:] [OO]

force /6/ | /O/ [Ö:] | [O:] [Ö:] | [O:] [OO]

cure /6/ | /O/ – [Ö:] | [O:] [OO]

letter /a/ | /@/ – [a
¯
] | [@] [a] | [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [Öô] | [3ô] [Oô] | [3ô]

nearer (near) – – [iaô] [iaô]

mary (square) – – [iaô] [iaô]

safari (start) – – [a
¯
ô] | [Aô] [aô] | [Aô]

aura (north) – – [Ö:ô] | [O:ô] [OOô]

oral (force) – – [Ö:ô] | [O:ô] [OOô]

curie (cure) – – [Ö:] | [O:ô] [OOô]

lettering (letter) – – [a
¯
ô] | [@ô] [aô] | [@ô]

Table 2.22: Vowel set: Caribbean – Trinidad: “|” divides two sub-accents: the left is
basilectal and the right is acrolectal.
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 581–583)

kit /I/ – [I] [I]

dress /E/ – [E] [E]

trap /a/ – [a] [a]
lot /a/ | /A/ – [a] | [A] [a] | [A]

strut /2/ [O] [O] [O]

foot /U/ – [U] [U]

bath /a:/ – [a:] [aa]
cloth /a:/ | /O:/ – [a:] | [O:] [aa] | [OO]

fleece /i:/ – [i:] [ij]
face /e:/ – [e:] [ee]
palm /a:/ – [a:] [aa]

thought /a:/ | /A:/ – [a:] | [A:] [aa] | [AA]

goat /o:/ – [o:] [oo]
goose /u:/ – [u:] [uw]
price /aI/ – [aI] [aj]
choice /aI/ | /OI/ – [aI] | [OI] [aj] | [Oj]

mouth /OU/ – [OU] [Ow]

happy – [i] [i] [i]
comma /a/ | /@/ – [a] | [@] [a] | [@]

nurse /2/ | /2ô/ [O] | [Oô] [O] | [Oô] [O] | [Oô]

near /e@/ – [e@] [e@]

square /e@/ – [e@] [e@]

start /a/ | /A/ – [a] | [A] [a] | [A]

north /6/ | /O/ – [6] | [O] [6] | [O]

force /6/ | /O/ – [6] | [O] [6] | [O]

cure /6/ | /O/ – [6] | [O] [6] | [O]

letter /a/ | /@/ – [a] | [@] [a] | [@]

mirror (kit) – – [Iô] [Iô]

merry (dress) – – [Eô] [Eô]

current (nurse) – – [Oô] [Oô]

nearer (near) – – [e@ô] [e@ô]

mary (square) – – [e@ô] [e@ô]

safari (start) – – [aô] | [Aô] [aô] | [Aô]

aura (north) – – [6ô] | [Oô] [6ô] | [Oô]

oral (force) – – [6ô] | [Oô] [6ô] | [Oô]

curie (cure) – – [6ô] | [Oô] [6ô] | [Oô]

lettering (letter) – – [aô] | [@ô] [aô] | [@ô]

Table 2.23: Vowel set: Caribbean – Guyana: “|” divides two sub-accents: the left is
basilectal and the right is acrolectal
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final column.

Multiple modifications were made to simplify the final vowel set. strut and

the starting-point of the price and mouth vowels have three realisations [2], [Ö],

[@]; however, only the [2] realisation is chosen. The diacritics for lowered and raised

vowels were removed, such as [Ifl] in kit and mirror, [efl] in dress and merry, [efl:]

and [efi@] in face, and [ofl:] in goat, and [Ufl] in foot.

2.2.7.9.6.5 Caribbean – The Leewards In order to determine an appropri-

ate vowel set for the Leewards accent, I examined Wells (1982d, pp. 585–588) which

focussed on the speech of Montserrat. Table 2.25 contains a summary of the vowel

set for this accent. I tabulated the phonemic vowel set by Wells (1982d, p. 588) in

the second column. I utilised Wells’s detailed discussion of the surface realisation

of the accent, which is summarised in the third column of the table. I completed

the vowel set by extrapolation from the surface and phonemic forms (cf. Section

2.2.7.1.4), which is tabulated in the fourth column. Finally, I made modifications

similar to those made to other accents for consistency (cf. Section 2.2.7.1.2 and

Section 2.2.7.1.3). The final vowel set for this thesis is tabulated in the final column.

In open syllables, the realisations of historical long vowels are shortened, e.g. tea

is [ti] but beat is [bi:t]. This allophonic relationship is denoted with “∼” in the table.

Furthermore, [Ö] and [̈i] are simplified as [O] and [i] respectively with the diacritics

removed.

2.3 Written English corpus

This section describes a corpus that I constructed to serve as a “control” for subse-

quent analyses of the misperception corpus and various psycholinguistic norms can

be derived from such a corpus.

While speech corpora are a valuable resource for linguists and speech engineers,
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 583–585)

kit /I/ [Ifl] [Ifl] [I]

dress /E/ [efl] [efl] [E]

trap /a/ – [a] [a]
lot /6/ [6], [A] [6], [A] [6], [A]

strut /2/ [2], [Ö], [@] [2], [Ö], [@] [2]

foot /U/ [Ufl] [Ufl] [U]

bath /a:/ – [a:] [aa]
cloth /6:/ [6:], [A:] [6:], [A:] [66], [AA]

fleece /i:/ – [i:] [ij]
face /e:/ [efl:], [efi@] [efl:], [efi@] [ee], [e@]

palm /a:/ – [a:] [aa]
thought /6:/ – [6:] [66]

goat /o:/ [ofl:], [o@] [ofl:], [o@] [oo], [o@]

goose /u:/ [Ü:] [Ü:] [uw]
price /2i/ [2i], [Öi], [@i] [2i], [Öi], [@i] [2j]

choice /2i/ | /oi/ – [2i] | [oi] [2j] | [oj]

mouth /2U/ [2Ü], [ÖÜ], [@Ü] [2Ü], [ÖÜ], [@Ü] [2w]

happy /i:/ – [i:] [ij]
comma /@/ – [@] [@]

nurse – [3~:] [3~:] [33ô]

near /e:ô/ – [e:ô] [eeô]

square /e:ô/ – [e:ô] [eeô]

start /a:ô/ – [a:ô] [aaô]

north /6:ô/ – [6:ô] [66ô]

force /o:ô/ – [o:ô] [ooô]

cure /o:ô/ – [o:ô] [ooô]

letter /@ô/ [Ä] [Ä] [@ô]

mirror (kit) – – [Iflô] [Iô]

merry (dress) – – [eflô] [Eô]

current (nurse) – – [3~:] [33ô]

nearer (near) – – [e:ô] [eeô]

mary (square) – – [e:ô] [eeô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [6:ô] [66ô]

oral (force) – – [o:ô] [ooô]

curie (cure) – – [o:ô] [ooô]

lettering (letter) – – [Ä] [@ô]

Table 2.24: Vowel set: Caribbean – Barbados: “|” divides two sub-accents: the left is
basilectal and the right is acrolectal.
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Keyword Phonemic Surface Extrapolated This thesis
Wells (1982d, pp. 585–588)

kit /i/ [i] [i] [i]
dress /e/ [e] [e] [e]
trap /a/ – [a] [a]
lot /6/ | /a/ – [6] | [a] [6] | [a]

strut /o/ [Ö] [Ö] [O]

foot /u/ [u] [u] [u]
bath /a:/ [a:] ∼ [a] [a:] ∼ [a] [aa] ∼ [a]
cloth /a:/ | /6:/ [a:] ∼ [a] | [6:] ∼ [6] [a:] ∼ [a] | [6:] ∼ [6] [aa] ∼ [a] | [66] ∼ [6]

fleece /i:/ [i:] ∼ [i] [i:] ∼ [i] [ij] ∼ [i]
face /ie/ | /e:/ [ie] | [e:] ∼ [e] [ie] | [e:] ∼ [e] [ie] | [ee] ∼ [e]
palm – – [a:] ∼ [a] [aa] ∼ [a]

thought – – [a:] ∼ [a] | [6:] ∼ [6] [aa] ∼ [a] | [66] ∼ [6]

goat /uo/ | /o:/ [uÖ] | [o:] ∼ [o] [uÖ] | [o:] ∼ [o] [uO] | [oo] ∼ [o]

goose /u:/ [u:] ∼ [u] [u:] ∼ [u] [uu] ∼ [u]
price /ai/ | /6i/ – [ai] | [6i] [aj] | [6j]

choice – – [ai] | [6i] [aj] | [6j]

mouth /ou/ – [ou] [ow]
happy – [i] [i] [i]
comma /u/ [u] | [@] [u] | [@] [u] | [@]

nurse /oô / | /3:/ [Ö:], [Ö~:] | [Ö] [Ö:], [Ö ~:] | [Ö] [OO] | [O]

near – [̈ia] | [i5] [̈ia] | [i5] [ia]
square – [̈ia] | [i5] [̈ia] | [i5] [ia]
start /a:/ – [a:] [aa]
north – [a:] ∼ [a] | [6:] ∼ [6] [a:] ∼ [a] | [6:] ∼ [6] [aa] ∼ [a] | [66] ∼ [6]

force – [uo], [o2] | [oÖ] [uo], [o2] | [oÖ] [uo], [o2] | [oO]

cure – [uo], [o2] [uo], [o2] [uo], [o2]

letter – – [u] | [@] [u] | [@]

mirror (kit) – – [iô] [iô]

merry (dress) – – [eô] [eô]

current (nurse) – – [Ö:ô] | [Öô] [OOô] | [Oô]

nearer (near) – – [̈iaô] | [i5ô] [iaô]

mary (square) – – [̈iaô] | [i5ô] [iaô]

safari (start) – – [a:ô] [aaô]

aura (north) – – [a:ô] | [6:ô] [aaô] | [66ô]

oral (force) – – [uoô], [o2ô] | [oÖô] [uoô], [o2ô] | [oOô]

curie (cure) – – [uoô], [o2ô] [uoô], [o2ô]

lettering (letter) – – [uô] | [@ô] [uô] | [@ô]

Table 2.25: Vowel set: Caribbean – The Leewards: “|” divides two sub-accents: the
left is basilectal and the right is acrolectal; “∼” denotes an allophonic relationship.
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they are often small (< five million words) and frequently concentrate on a narrow

speech type such as telephone exchanges in the switchboard corpus (Calhoun et al.,

2010) and prompted speech as in the TIMIT corpus (Garofolo et al., 1993), and are

therefore unlikely to be representative of everyday speech. In order to obtain reliable

word frequency norms, a corpus needs to be of 16 – 30 million words (Brysbaert and

New, 2009). Together, the small corpus size and narrow speech types make the

existing spoken corpora unsuitable for extracting a wide range of psycholinguistic

norms.

Given that the existing speech corpora are not suitable, I chose to use corpora

that have been compiled from TV and film subtitle texts. This method of using film

subtitles to construct language corpora, SUBTLEX, was developed by New et al.,

2007 for French, and subsequently used for English (Brysbaert and New, 2009)11,

Dutch (Keuleers, Brysbaert, and New, 2010), Polish (Mandera et al., 2014), Greek

(Dimitropoulou et al., 2009), Brazilian Portuguese (Tang, 2012) and many other

languages. Crucially lexical frequencies derived from these SUBTLEX corpora have

been proven to be excellent predictors of behavioural task measures such as reaction

times in written lexical decision tasks and consistently outperformed other larger

written corpora or smaller spoken corpora, primarily due to their size (typically at

least 20 million words, to half a billion words) and spoken register, as they are

essentially transcribed spoken speech. Recent work by Ernestus and Cutler (2014)

has shown that SUBTLEX is also an excellent predictor of reaction time in auditory

lexical decision tasks. This finding directly supports the use of SUBTLEX for speech

perception data. Together, the use of SUBTLEX for extracting psycholinguistic

norms (beyond token frequencies) for this thesis is justified by the aforementioned

validation studies.
11The reasons for not using Brysbaert and New (2009) as the control corpus are that Brysbaert

and New (2009) is a frequency list and not a raw corpus which is not useful for creating a lan-
guage model and furthermore the new corpus is approximately ten times bigger and thus more
representative.
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In the following sections, I will outline the compilation and processing of the

corpus, from orthographic transcriptions to phonetic transcriptions.

2.3.1 Source

The corpus was compiled using subtitles from http://opensubtitles.org that are

tagged as being English. The files were obtained by Paweł Mandera from the Cen-

ter for Reading Research, Ghent University, Belgium. Time-stamps and other non-

linguistic information were removed. Crucially, these files have been deduplicated,

meaning near/exact duplicates of the same TV episode or film have been removed

(Tang, 2012)12 leaving 69,382 files.

2.3.2 Processing

Although the downloaded subtitle files were self-identified as English, errors were

often made by the uploaders who sometimes included the original subtitles of the

films with the translated versions in the zip package. To remove any non-English

subtitle files, Shuyo’s (2010) language detection library for Java, langdetect, was

applied. The model calculates language probabilities from features of spelling using

a naïve Bayesian model with character n-gram, using language profiles generated

from Wikipedia abstracts. It has an above-99% precision for 53 languages. Only the

files with a probability of 99% of being English were kept. This filtered out 60 files,

leaving 69,322 files.

All 69,322 files underwent multiple steps of text normalisation as described in

Section 2.1.2.1, regarding the treatments of upper/lowercases, punctuation marks,

full stops, apostrophes, hyphens, and abbreviations. Two files were removed after

the normalisation process due to corrupted formatting, leaving 69,320 files.

Since subtitle documents can contain large portions of text in languages other
12I profoundly thank Paweł Mandera for sharing these deduplicated files with me.
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than English, (for instance, sung portions of musicals are often not translated), ad-

ditional cleaning was required. These mixed-language files can be undetected by the

language detection model above because langdetect only tests random samples from

each piece of text. Following the footsteps of SUBTLEX–PL (Mandera et al., 2014),

preliminary word frequencies were first calculated for all of the documents, and a file

was removed if the 30 most frequent word types (from the preliminary word frequen-

cies) did not cover at least 30% of the total tokens in the file. The 30% threshold

was determined by manual inspections. I found that files with a threshold below 30

tended to contain more foreign proper names (e.g. names and places), a large portion

of foreign text (e.g. sung speech in a foreign language not translated into English),

or simply many typos. This threshold filter removed 3181 files, approximately 4.6%

of the total, leaving 66,139 files. The final corpus has 353.4 million word tokens, and

755,559 word types.

2.3.2.1 Transcription

eSpeak (http://espeak.sourceforge.net/), a text-to-speech software, was used

to transcribe the text-normalised corpus into IPA. The transcription system uses a

combination of pronunciation rules and dictionaries. In order to determine the relia-

bility of this transcription system, Marian et al. (2012) compared the transcription

of eSpeak to the Carnegie Mellon Pronouncing Dictionary (Weide, 2014), and found

that English eSpeak transcriptions correlates strongly with the CMU database with

R = 0.97 (N = 26,474, p < 0.001). This strong and significant correlation suggests

that the eSpeak system is reliable. I used the American English transcription setting,

en-us, in this software.

First, all word types were extracted from the 66,139 files. Second, the word

types were then converted into pronunciation using eSpeak. Third, although the

system’s output is IPA transcriptions, the sets of IPA symbols it provides were then
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normalised to the General American system described in Section 2.2.7.2. Fourth,

given that eSpeak can transcribe intervocalic /t/ (in the environment of tapping) as

tap but not /d/, I therefore applied the tapping rules as described in Section 2.2.2 to

transcribe the intervocalic /d/s as taps as well as intervocalic /t/s and /d/s as taps

across word boundaries. Finally, aspiration of the voiceless stops was transcribed as

described in Section 2.2.2.

2.4 Phonetic alignment

The key aspect of analysing mishearing data is to identify the differences between the

intended speech and perceived speech. However, two important difficulties are the

size of the misheard sequence and the identification of the differences between the

intended and the perceived. Such alignments fall under the umbrella term, Pairwise

String Alignment.

Slips containing only one ‘error’ - an insertion, deletion or substitution - can be

analysed rather straightforwardly, e.g. ‘thug’ → ‘hug’, [T2g] → [h2g]; the change is

[T] → [h]. However, it is not always simple to align slips with multiple errors, e.g.

‘sleeping bag’ → ‘single man’, [sli:pIN bæg] → [sINg@l mæn]. The number of possible

alignments between two sequences (say both have a length of L ≈ 10) are 22L√
πL

(Durbin

et al., 1998), which are ≈ 200,000. It is therefore clear that the complexity of the

analysis increases with the number of errors, and thus a manual alignment by visually

identifying changes is unfeasible. Furthermore, manually aligning mishearing data

would be a subjective process and the quality would vary depending on the analyst

and his/her judgement. So there is an evident need for a computational method that

is objective and automatic.
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2.4.1 A review of alignment algorithms

There are broadly two approaches to aligning phonetic sequences – phonetically based

and phonetically blind. On the one hand, considering that the one of the research

aims is to find segmental changes and discover how phonetic similarity motivates

these changes, a phonetically blind alignment algorithm may be more suitable for

the current analyses as it is more likely to avoid any potential issues of circularity.

On the other hand, if the algorithm is phonetically blind the quality of alignments

might be poor. For example a consonant-consonant substitution would be penalized

as much as a consonant-vowel one. In the following sections, I will review the two

existing approaches of alignments, starting with the phonetically based approach.

2.4.1.1 Phonetically based algorithms

In phonetically based alignments, it is necessary to establish the phonetic similar-

ity between phones, for example, [p] is phonetically more similar to [t] than to [l].

This relies on the assumption that similar sounds are more likely to correspond to

each other, and therefore more likely to be aligned with each other. In linguistics,

phonetically based alignments have been developed for aligning pairs of cognates,

bilingual texts, speech misproduction data and more. One example is an algorithm

called ALINE (Kondrak, 2003), which uses phonetic similarity to improve the align-

ment accuracy of cognates by defining multi-valued articulatory phonetic features

such as voice, lateral, place and nasal. However, there is no widely accepted pro-

cedure to determine phonetic similarity (Laver, 1994, p.391), and taking the case

of ALINE (Kondrak, 2003), the weight of the phonetic features are free parame-

ters so it is not clear what would be a principled way of determining the values of

these weights. Much of the time, linguists rely on intuitions and some system of

phonetic/phonological features. The following is an overview of various phonetically

based alignment methods used by previous speech misperception work.
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2.4.1.1.1 Manual alignment Bird’s (1998) procedure was to first align syllables

between the intended and perceived utterances based on stress, and then do the

segmental alignments. The criteria for the segmental alignments were based on the

author’s intuition. In one particular example, the utterance “It’s the milkman” was

misperceived as “It’s a nightmare.”. The author pointed out that one could argue

that [l] aligns with [t] with [k] being deleted. However, in the author’s own words,

“this goes against observation and logic”, because [l] is more often deleted and [k]

and [t] differ only in their place of articulation. The author’s alignment procedure

therefore relies on a combination of linguistic knowledge and arbitrary judgement,

e.g. [l] is more often deleted (in a coda) and the number of phonological feature

differences between segments. Three drawbacks with Bird’s (1998) approach are

apparent. Firstly, it is a manual process, which is not feasible for large data sets;

secondly, since the stress pattern was aligned first, this indirectly biases the rate of

stress errors over segmental errors, thus resulting in fewer stress errors; thirdly, the

reliance on intuition is open to a wide range of problems, such as reliability and

inter-coder agreement.

2.4.1.1.2 Semi-automated alignment Browman’s (1980) alignment procedure

was in the same vein as that of Bird (1998) and involved an initial manual alignment

of syllables which aimed to maximize similarity using the judgement of the author.

After syllable alignment, a specialised algorithm was devised to automate the seg-

mental alignments. The algorithm follows three principles which were applied in

the order of their importance (most important to the least important) – identity,

common feature maximization and segmental order information; in addition, it is

able to detect segmental metatheses. For detailed descriptions of the algorithm, see

Browman (1980).

While Browman’s (1980) approach has better automaticity than Bird (1998), it

does have one major drawback in that it explicitly uses phonological features in the
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alignment process which arguably results in more alignment biases (although these

biases would be highly systematic), favouring the phonological features chosen.

Inspired by Bird’s (1998) and Browman’s (1980) methods, Tang and Nevins

(2014) devised a method that employs an automated algorithm like that of Browman

(1980), but does not rely on a particular phonological feature set, instead relying on

linguists’ intuitions like that of Bird (1998). Tang’s method adapted the Needleman-

Wunsch algorithm (Needleman and Wunsch, 1970), which is commonly used to align

DNA sequences in molecular biology.

The Needleman-Wunsch algorithm employs a dynamic programming technique,

which solves problems through the use of previously computed solutions on sub-

problems. It has multiple free parameters: the cost of matches, mismatches (sub-

stitutions) and gaps (insertions and deletions). See Figure 2.14 for details. More

cell(i, j) = max


cell(i− 1, j − 1) + S(Xi, Yj)

cell(i− 1, j) + g
cell(i, j − 1) + g


Figure 2.14: Needleman-Wunsch algorithm: the S(Xi, Yj) is the score obtained from
the substitution matrix for two segments corresponding to the column and row of
cell(i,j), g is the gap penalty.

specifically, the Needleman-Wunsch algorithm involves a gap penalty which can be

constant, linear and affine. Different gap penalty schemes require different modifi-

cations to the algorithm. The affine gap penalty scheme uses two parameters, the

cost of a gap opening and the cost for a gap extension which is a function of the

gap length l. These are combined using the equation GapPenalty = gopen + lgextend

or GapPenalty = gopen + (l − 1)gextend (Eidhammer, Jonassen, and Taylor, 2004);

this scheme can favour big gaps over many smaller gaps of the equivalent size and

vice-versa. This equation was chosen for this study because it could be beneficial for

capturing errors that involve whole-word deletions rather than just simple isolated

segmental deletions.
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Motivated by how Browman (1980) manually aligned the syllables between the

intended and perceived utterances and the assumption that syllables are most likely

to be preserved in misperception, the compromise arrived at was to use an algorithm

which is phonetically blind in the sense of distinctive features but is sensitive to

syllables, i.e. the alignment is biased towards aligning by syllables. A simple imple-

mentation of this with the Needleman-Wunsch affine algorithm was devised. Firstly,

phonetic blindness was achieved by inputting an identity matrix for the substitution

matrix that the algorithm requires (see Durbin et al. (1998) for details of substitu-

tion matrices). Secondly, the alignment by syllable was done by simply replacing all

the vowels with the same segment “V” to represent the nucleus of a syllable, as this

would therefore bias the alignment algorithm to align by syllables and act as a soft

constraint. Stress was ignored in the alignment process, unlike the method of Bird

(1998).

Of the four parameters (Match, Mismatch, Gap opening, and Gap extension), the

match cost was fixed with the value 1 to minimize the complexity of the optimization;

this is also a default value for the match cost in most substitution matrices, and

therefore only three parameters remain. Manual parameter optimization would be

challenging so the computational Monte Carlo method (Metropolis and Ulam, 1949)

was employed for finding a suitable set of parameters. The training data was 10% of

the corpus which was manually aligned by the authors. Half of the training data was

for calibration and the other half for validation. X (the number of generated sets of

parameters) and the upper and lower limits of each parameter were systematically

increased until a 100% match rate was achieved.

A remaining and recurring criticism13 is that this procedure is only partially

phonetically blind since manual alignment can implicitly introduce phonetic biases,

just like that of Bird (1998), but this was not a major drawback in the analyses
13I thank Dr. Katrin Skoruppa for pointing this weakness out.
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done by Tang and Nevins (2014) as they only considered unambiguously aligned

errors. That is, the immediately adjacent segments of a mismatch pair of segments

are matched. For instance, in [kIt] and [kæt] [k] and [t] are identical in both of

the intended and perceived utterances. In any case, restricting analyses to only

unambiguously aligned errors would mean losing data that involved “ambiguous”

alignments and the restriction itself is an assumption and any findings can only be

generalised to these restricted cases14. Furthermore, any semi-automated procedures

requiring manual alignments are not only time-consuming and but are also prone to

errors and biases.

2.4.1.2 Phonetically blind algorithm

A phonetically blind alignment algorithm should not have been exposed to prior

knowledge of linguistic information. For instance, it should not know anything about

phonological features and it should not be able to distinguish between a consonant

and a vowel. One way of achieving this would be to use a dynamic alignment al-

gorithm, such as the Needleman-Wunsch algorithm, with arbitrarily chosen fixed

weights for match, mismatch, and gaps. However, this may not be satisfactory as it

could result in unwanted alignments, such that it would freely align a vowel with a

consonant. This leads us to add another criterion for our ideal alignment method:

the algorithm needs to be able to learn linguistic information from the data itself –

for example a vowel is more similar to another vowel than to a consonant. Adding

this to our previously listed criteria, an ideal alignment method needs to be a) objec-

tive, thus it would be independent of analysts’ performance, b) automatic, and c) to

be able to learn linguistic information without supervision. Looking at all of these

criteria, it is clear that we need an unsupervised alignment algorithm that is able

to learn linguistic information from the alignments themselves. Two recent studies,
14I thank Dr. Mark Huckvale for pointing out this issue.
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Hirjee and Brown (2010) and Wieling, Prokić, and Nerbonne (2009), employed such

a method for linguistic data. Their alignment procedures are summarised in the

section below.

2.4.1.2.1 PMI-based Needleman-Wunsch algorithm (Hirjee and Brown,

2010) Hirjee and Brown (2010) applied an iterative alignment method to aligning

misheard lyrics. The data in their study are closely related to the data in this thesis,

in that they are using misheard data from a different domain, making their alignment

method particularly suitable for our analyses of mishearing in spoken speech.

Hirjee and Brown (2010) adapted an optimal global alignment algorithm from

Durbin et al. (1998) without specifying the name of the algorithm. It is reasonable

to assume that it is the Needleman-Wunsch algorithm (Needleman and Wunsch,

1970) as it is a global alignment algorithm documented in Durbin et al. (1998). The

algorithm requires a substitution matrix. This matrix encodes the likelihood of a

particular pair of segments co-occurring (i.e. aligned), and it is calculated using log-

odds scores (Henikoff and Henikoff, 1992). This log-odds metric is in fact identical

to pointwise mutual information (PMI) (Church and Hanks, 1990).

PMI(x, y) = log2

(
p(x,y)

p(x)p(y)

)
Figure 2.15: Pointwise Mutual Information

Where:

• p(x, y) is the probability of aligning segment x with segment y. It is estimated

by calculating the number of observations that segment x aligns with segment

y, divided by the total number of aligned segments.

• p(x) and p(y) are estimated by calculating the number of observations of seg-

ment x (and segment y) divided by the total number of segments.
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Informally, PMI compares the probability of observing segment x with segment

y with the probability of observing these two segments independently (i.e. chance).

A positive PMI indicates the pair of segments is more likely to co-occur, while a

negative PMI indicates the pair of segments is more likely to co-occur by chance.

The PMI values of all of the possible segment pairs are used as the substitution

matrix for the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

The overall procedure by Hirjee and Brown (2010) is outlined below:

1. Calculate initial confusion matrix: For a given pair of utterances, firstly the seg-

mental length of the two utterances are matched by adding as many segments

“-” (which represent insertions or deletions) as needed; secondly the segments

are aligned sequentially starting from the left for all the pairs of utterances.

Finally, a confusion matrix is obtained by counting the number of observations

for given pairs of segments.

2. Create the PMI substitution matrix: the confusion matrix from the previous

step is used to calculate the PMI substitution matrix using Equation 2.15.

3. Create new alignments: New alignments are obtained using the Needleman-

Wunsch algorithm (Needleman and Wunsch, 1970) with the PMI substitution

matrix calculated in the previous step.

4. Recalculate the confusion matrix: With the new alignments obtained in the

previous step, a new confusion matrix can then be calculated.

5. Repeat Steps 2, 3 and 4, until there is no change in the alignments (i.e. con-

vergence is reached).

Validation: Hirjee and Brown’s (2010) focus was on improving the retrieval of

lyrics with misheard lyrics queries in search engines, e.g. a user entered the search

terms “kiss this guy” (instead of the correct lyrics, “kiss the sky”) to search for
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the Jimi Hendrix’s song, “Purple Haze”. The validation was done by assessing the

performance of the authors’ method at finding the best matches for a query set of

misheard lyrics in a collection of full song lyrics containing the correct version of each

query. They compared four other methods based on simple edit distance (sensitive

to match and mismatch segments), phoneme edit distance (sensitive to phonological

features), a syllable alignment pattern searching method (sensitive to syllables), and

a probabilistic syllable alignment method but trained on the misheard lyrics just

like the previously described method. The authors’ method outperformed all of the

other four methods and had the highest retrieval accuracy.

2.4.1.2.2 PMI-based Levenshtein distance (Wieling, Prokić, and Ner-

bonne, 2009) Wieling, Prokić, and Nerbonne (2009) developed a similar PMI-

based method which was applied to phonetic dialect data. Their method has three

major differences to Hirjee and Brown (2010). Firstly, it employs a different align-

ment algorithm. Secondly, it differs in how the initial confusion matrix is obtained.

Thirdly, it differs in how the PMI values are calculated and transformed. These three

differences are described below.

The first difference from Hirjee and Brown (2010) is the choice of the alignment al-

gorithm. The alignment algorithm chosen by Wieling, Prokić, and Nerbonne (2009)

was the Levenshtein distance (Levenshtein, 1966). The use of this algorithm for

measuring linguistic distances is well-motivated and has been used to successfully

measure linguistic distances for multiple languages, such as Irish (Kessler, 1995),

Dutch and Norwegian (Heeringa, 2004).The regular Levenshtein distance has a sim-

ple cost scheme: mismatch (substitution, insertion or deletion) has a cost of 1, and

match has a cost of 0. This cost scheme, which has no linguistic knowledge, can

lead to alignments of vowels with consonants, so this could lead to unwanted align-

ments. To tackle this, Wieling, Prokić, and Nerbonne (2009) adapted the regular

Levenshtein distance which disallowed alignments between vowels and consonants –

189



henceforth, the VC-sensitive Levenshtein algorithm.

The second difference is how the initial confusion matrix is obtained. Wieling,

Prokić, and Nerbonne (2009) obtained the initial confusion matrix by applying the

VC-sensitive Levenshtein algorithm with the default cost of 1 for a mismatch and 0

for a match.

The third difference is how the PMI values are calculated and transformed. Since

the Levenshtein distance takes a distance matrix (as opposed to a substitution ma-

trix), the PMI values were scaled in the range of 0 to 1 by subtracting each PMI

value from 0 and adding the maximum PMI value. Later work by Wieling and

Nerbonne (2011) used an improved version of this method to measure the linguistic

distances of five languages (Bantu, Bulgarian, German, Dutch and Norwegian); the

improvement was achieved by ignoring identical sound segment pairs in calculating

the PMI values. The intuition behind this decision is that identical pairs should have

a distance of 0 and the interest lies in the distance of non-identical sound segment

pairs relative to each other. This also means that when converting PMI values to

distances, the normalization should be the range of a small value to 1; this is to

ensure that only identical segments have a distance of 0. This study also mentioned

additional details on how to tackle sparse matrices; that is, when a segment pair

does not occur (p(x, y) = 0). The solution was to add a small value to p(x, y), p(x)

and p(y) in Equation 2.15.

The overall procedure by Wieling and Nerbonne (2011) is outlined below:

1. Calculate initial confusion matrix: the VC-sensitive Levenshtein algorithm

with a regular cost matrix is used to align pairs of utterances. A confusion

matrix is then obtained by counting the number of observations for a given

pairs of segments.

2. Create the PMI values: the confusion matrix from the previous step is used to

calculate the PMI values using Equation 2.15 with the modification of ignoring
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identical sound segment pairs.

3. Convert PMI values to distances: the distance for identical segments is set to

0. For non-identical segments, the PMI values are converted to distances by

subtracting each PMI value from 0, and normalizing the PMI scores to range

between a small value and 1.

4. Create new alignments: New alignments are obtained using the VC-sensitive

Levenshtein algorithm with the distance matrix calculated in the previous step.

5. Recalculate the confusion matrix: With the new alignments obtained in the

previous step, a new confusion matrix can then be calculated.

6. Repeat Steps 2, 3, 4 and 5, until there is no change in the alignments (i.e.

convergence is reached).

Validation: Even without any further modification to how the PMI values are

calculated, Wieling, Prokić, and Nerbonne (2009) already found that the method can

achieve superior alignments. They evaluated its performance against other methods

(such as the Hamming algorithm, the VC-sensitive Levenshtein algorithm without

PMI and Pair Hidden Markov Model) using manually aligned Bulgarian dialect data

set which are considered to be the gold standard alignments (because it is manually

aligned by linguists) and found this PMI-based VC-sensitive Levenshtein distance

method was able to achieve the lowest alignment (word pairs) error rate (4.50%) as

well as being computationally efficient compared to other methods. Besides validat-

ing the method with manually-aligned dialect data, Wieling, Margaretha, and Ner-

bonne (2012) found that the PMI-based VC-sensitive Levenshtein distance method

was able to induce phonetic distances for Dutch and German vowels and these align-

ment induced distances correlated highly with acoustic distances. Finally, in a large

accent (nativeness) rating task with over 1,000 native American English listeners,
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Wieling et al. (2014) found that the phonetic distance induced by the same method

strongly correlates with subjective accent judgements. Overall, this method has

been used successfully to capture a) linguistic knowledge of dialectologists who man-

ually aligned dialect data sets (Wieling, Prokić, and Nerbonne, 2009); b) acoustic

similarity of vowels (Wieling, Margaretha, and Nerbonne, 2012), and c) perceptual

similarity of sentences (Wieling et al., 2014).

2.4.2 Algorithm selection and adaptation

Having reviewed the multiple alignment methods used in linguistics, I will now dis-

cuss which alignment method should be selected for analysing the mishearing data

in this thesis and what (if any) adaptations should be made.

The alignment methods reviewed in the previous section are summarised in Table

2.26. It is immediately clear the manual and semi automatic methods would not be

ideal, given the large amount of data used in this thesis, their bias towards subjective

linguistic knowledge, and that they have not been validated. The ideal candidates

are the methods used by Hirjee and Brown (2010) and Wieling and Nerbonne (2011),

as they are fully automatic, with no or minimal biases (in the case of Wieling and

Nerbonne (2011), consonants and vowels are not allowed to be aligned with each

other), and the linguistic knowledge was induced through iterative learning, that

was free from subjective biases by the authors or phonological features. Most impor-

tantly, they have both been validated. To break the tie between these two PMI-based

methods, we need to look into the quality of the validations. As summarised in the

previous section, Wieling and Nerbonne’s (2011) method was extensively validated

in multiple studies (Wieling et al., 2014; Wieling, Margaretha, and Nerbonne, 2012;

Wieling and Nerbonne, 2011; Wieling, Prokić, and Nerbonne, 2009), and was shown

to be appropriate for capturing linguistic knowledge when performing manual align-

ments and also acoustic and perceptual similarities, while the scope of Hirjee and
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Brown’s (2010) validation was comparably narrow and showed an improvement in

lyrics retrieval in search engines. Together, this led to the conclusion that Wieling

and Nerbonne’s (2011) method was the best candidate.

One modification was made to Wieling and Nerbonne’s (2011) method for this

thesis. The hard constraint that disallows consonants and vowels to be aligned

with each other, while it is a reasonably sensible constraint, can be overly harsh.

This is evidenced by the fact that in the original study that used the method in

Wieling, Prokić, and Nerbonne (2009), the authors found that the errors made by

the alignment method were caused by an inability to align vowels with consonants

(and presumably vice-versa). The modification would therefore be to change the

hard constraint to a soft constraint. Concretely, when obtaining the initial confusion

matrix, the cost matrix for the Levenshtein algorithm was set to have a high cost

(for instance, 100) for aligning consonants with vowels, and in subsequent iterations

the cost matrix is free to be updated and this constraint can therefore be overridden.

Furthermore, since the glides [j] and [w] are used as offglides (see Section 2.2.7.1.2),

which means some of glides are consonantal and some are vocalic (in the sense that

they form part of a vowel), the initial soft constraint did not apply to them, meaning

they were allowed to align with both consonants and vowels in the first iteration.

This modified version of Wieling and Nerbonne’s (2011) method, the PMI-based

VC-sensitive Levenshtein distance method, is therefore chosen for use throughout

this thesis for any analyses that require segmental alignments.

2.4.3 Minimal alignment unit

In pairwise alignments, one must define the alignment unit. But this decision is not

a trival one; as discussed below, it can affect the scope of analyses and allow/restrict

certain kinds of misperception.

Previous work on misperception (experimental and naturalistic) mostly aligned
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Source Automatic Algorithm Bias Linguistic
Knowledge Validated

Bird (1998) No – Stress-pattern Authors No

Browman (1980) Semi Tailor-made Syllable
Authors,

Phonological
features

No

Tang and Nevins (2014) Semi Needleman-
Wunch Syllable Authors No

Hirjee and Brown (2010) Yes Needleman-
Wunch – Inductive Yes

Wieling and Nerbonne (2011) Yes Levenshtein Consonants and
Vowels (Hard) Inductive Yes

Table 2.26: An overview of alignment methods

their data on a phoneme level (Miller and Nicely, 1955; Wang and Bilger, 1973; Cut-

ler and Butterfield, 1992; Browman, 1980; Bond, 1999; Labov, 2010b). One should

question whether phonemes are the correct units of alignment. The implication of

using phonemes as the units for alignment is that the phonemes that are “complex”

(occupy more than one timing slot, e.g. long vowels, diphthongs and affricates) can-

not be misperceived into multiple “simple” phonemes (occupy only one timing slot).

Phonotactics can often tell us whether these complex phonemes are divisble or not

(e.g.Wells (1990) treated affricates as indivisible using arguments from phonotactics),

but this is not the case in perception. For example, it is possible that the affricate

[tS] is misperceived as two simple phones, [t] and [s], where the first segment of the

affricate was perceived correctly as [t] while the second segment was misperceived

as [s]. Similarly with rhotic vowels (see Section 2.2.7.2.2), the rhoticity can be mis-

perceived as another sonorant. In sum, I regard phonemes to be too large a unit for

alignment purposes; this would impose too big a restriction on the possible kinds of

misperception.

This thesis will use the IPA segments in Section 2.2.2.2 as the minimal alignment

units. With regard to the long vowels and rhotic vowels, the length and the rhoticity

are encoded as a separate segment. Crucially, the length marks are encoded as a

copy of the previous segment (see Section 2.2.7.1.3). The diphthongs are divisible,
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meaning that the offglides can freely align. Similarly, affricates are divisible. In order

to analyse these complex phones as a unit after the alignment process, the aligned

segments can be re-parsed to regroup the sub-segments (from complex phones) back

to being a single unit, e.g. the segments [t] and [S] (from [tS]) were aligned with [t]

and [s] respectively, and the regrouping will convert [t] [S] back to [tS]. This would

mean being able to detect the kind of misperception mentioned above ([tS] into [t]

and [s]) without losing the possibility of analysing the interactions between complex

and simple phones.

Finally, syllable structure (onsets, nuclei and codas), syllable breaks and stress

marks are not part of the alignment units. Instead they will be re-associated with the

corresponding segments after the alignment process. Alternatively, this information

could in fact be tagged as part of the segments. For instance, stress marks could be

encoded as part of the syllable by attaching stress to all of the segments (assuming

syllables are stress-bearing units) or just the nuclei or the rhyme within the syllables

prior to the alignment process. Similarly, syllabic structures can also be encoded in

this manner, such that every segment is tagged with a syllabic label. Syllabic breaks

can be encoded in multiple ways, for example using a three label system – pre-break,

post-break, and non-adjacent. This tagging method was not used, as the chosen

alignment method in Section 2.4.2 relies on the alignment units to be non-sparse

due to its use of alignments as a way of calculating perceptual distances which in

turn is used to improve the quality of the alignments, and this tagging method will

undoubtedly introduce a lot of alignment units that are of very low frequency and

therefore causing data-sparsity problems.
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2.5 Contributions

This section will summarise the contribution of this chapter to the thesis as a whole

and the potential contributions to the field of linguistics.

Section 2.1 documented the naturalistic English misperception corpora and the

steps that were taken to compile them into a single mega corpus. This resulted

in a mega corpus of naturalistic English misperception, taking into account the

variability between each subcorpus (e.g. missing demographics, storage formats and

others). This is on par with the Fromkin’s Speech Error Database (Fromkin, 2000)

that contains about 9,000 instances of speech errors for selected languages, and

which was developed by combining multiple speech error corpora from independent

researchers. The need to compile such a mega corpus for speech errors and the

issues involved were discussed by Schütze and Ferreira (2007), and many of the

arguments are directly applicable to our speech misperception data. In sum, this

chapter documented a similar undertaking for naturalistic misperception of English,

containing about 5,000 instances, thus making our present mega corpus one of a kind.

In the future, the aim would be to make this corpus accessible to other researchers

via a web platform as in the case with the Fromkin’s Speech Error Database.

Section 2.2 documented the phonetic transcriptions of the mega corpus. In Sec-

tion 2.2.7, I systematically examined the vowel sets of 14 English dialects in order to

perform dialectal transcriptions. For each dialect, I examined the phonemic vowel

set and the surface vowel set as reported by the existing literature. Missing surface

vowels were extrapolated, and then finally the complete surface vowel set was sim-

plified and normalised to avoid introducing IPA symbols that are less widely used

across the dialects. The contribution to the thesis of mediating the data-sparsity

issue with the simplification of the surface vowels is that one can then analyse the

mega corpus as a whole without the need to subset the corpus by dialect, therefore

allowing the use of analytical techniques that require large samples. As a more gen-
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eral contribution, the thorough examinations of the dialects would serve as a starting

point for any cross-dialectal comparison of vowel sets, and furthermore the vowel sets

themselves could be used to aid the development of text-to-speech synthesis of the

dialects examined; for instance, a text-to-speech synthesis system of New York City

accented English.

In Section 2.2.4, I devised a novel data-driven method for selecting “legal” on-

sets for a syllabification method using the Maximal Onset Principle. For practical

purposes, this method allowed me to proceed to conduct analyses on the mispercep-

tion corpora, involving questions concerning sub-syllabic units (onsets, nucleus and

codas), without the need to make arbitrary decisions on whether certain marginal

onsets (e.g. [vl]) are legal onsets or not. Another advantage of this method is that

it is data-driven, which means it is relatively theory-independent15. Admittedly, the

proposed method is rudimentary with room for further development. For example,

in its present form the method does not take into account of any prosodic informa-

tion, such as stress, which is argued to be a determining factor for the syllabification

process (McCarthy, 1979). The suggested method needs to be further examined for

compatibility with the existing phonological/speech processing theories, as well as

its applicability to other languages.

Section 2.4 reviewed some of the alignment algorithms that were used by previous

studies of speech misperception corpora, and more generally on phonetic transcrip-

tion. I examined the pros and cons of each of the algorithms. With a focus on their

appropriateness for the mishearing data in this thesis, I selected a data-driven align-

ment algorithm with a few minor modifications. This contributes to the thesis by

providing a means of aligning the misperception data with minimal human/linguistic

biases, while achieving sensible alignments. More generally, this section serves as a
15Although a more theory-independent method would be to employ a kind of entropy-based

syllabification, which is not appropriate for our multi-dialectal corpus, as discussed in Section
2.2.4.
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detailed review of alignment algorithms for speech perception data and argues for

the merits of the chosen data-driven approach for aligning phonetic transcriptions.
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Chapter 3

Bottom-up phonetic and

phonological factors

3.1 Introduction

The focus of this chapter is to examine the bottom-up phonetic and phonological fac-

tors that play a role in naturalistic misperception. Previous analyses of naturalistic

misperception using the sub-corpora of the our combined mega corpus (Browman,

1978; Bird, 1998; Bond, 1999; Labov, 2010b; Tang and Nevins, 2014) have identified

numerous phonetic and phonological factors, as described in Chapter 1, Section 1.2.

However, none of these studies have attempted to quantify the amount of phonetic

biases. To best quantify the bias, the most direct method is to analyse the misper-

ception data at the lowest levels, namely segmental confusions; this is essentially a

confusion matrix of segments. The question is whether any phonetic/phonological

factors can be found at such a low level. Three approaches were devised to tackle

this question.
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3.1.1 Phonetic biases

The first approach is to examine the rate of confusions and separate them into the

most basic phonetic dimensions, features. The confusion rates of consonants will

be computed separately for place, manner and voicing – namely, place confusions,

manner confusions and voicing confusions. The rates of vowels will be computed sep-

arately for height and backness – namely, height confusions and backness confusions.

This will allow us to examine if there are any phonetic/phonological trends on a feat-

ural level, and whether these trends could be explained using phonetic/phonological

theories.

We will then focus the level of analysis on a segmental level. The overall approach

is to compare the segmental relationships in the naturalistic matrices with those that

are phonetically/phonologically based. This will allow us to quantify how much of

the segmental relationships in the naturalistic matrices can be explained by pure

phonetic/phonological factors.

Concretely, we will convert the segmental confusion matrices into distance matri-

ces which contain the pairwise distance between any two segments (e.g. [p] and [b],

[t] and [b], etc.), separately for consonants and for vowels. The confusion matrices

will first be converted into similarity matrices, which will then be converted into

distance matrices. It is important to note that the distance conversion is percep-

tually grounded by employing the distance metric by Shepard (1972) and Shepard

(1987). This metric captures the fact that perceptual distance has an exponential

relationship with similarity. Other distance conversions, such as taking the inverse

of similarity, are inadequate for perception data.

Similarly, the phonetic/phonological distance matrices will be computed using

acoustic measurements of vowels and feature values of consonants. The naturalis-

tic distance matrices and the phonetic/phonological distance matrices will then be

compared in two ways. First, correlation tests between two sets of distance matrices
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will be employed, which reflect the global similarity. Second, the distance matrices

will be projected into a hierarchical structure for consonants and a two-dimensional

space for the vowels. These projected structures will be then compared visually and

quantitatively using correlation tests.

3.1.2 Ecological validity

The second approach is to compare the segmental relationships in the naturalistic

matrices with those in experimentally induced misperception matrices. The experi-

mental matrices will be selected from studies that focused on perception of the lowest

level, without much top-down effects from the lexicon, by using stimuli that are either

a CV or VC syllable, most of which are non-words. These experimental confusion

matrices should therefore be more phonetically based than the naturalistic matrices.

By comparing the naturalistic matrices with the experimental matrices, we could fur-

ther examine the amount of phonetic factors involved in naturalistic misperception,

as in the first approach. In addition, we could examine the ecological validity of the

experimental matrices. Given that experimental matrices are generated under differ-

ent experimental manipulations, some manipulations might yield matrices that are

more similar to the naturalistic matrices than others. We will focus on two common

manipulations: signal-to-noise ratio and bandpass filtering.

Previous attempts have suggested that naturalistic misperception data are con-

gruent with experimental data in Bond, Moore, and Gable (1996), and other studies

summarised in Chapter 1, Section 1.3. However, as pointed out by Bond (1999, pp.

135–158), there are difficulties when comparing naturalistic and experimental data.

Firstly, the naturalistic data are reported data which rely on the memory of the

reporters and the interlocutors involved in a given misperception instance; however,

this is not the case for experimental data in which memory/reporting errors can be

eliminated.
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Secondly, in the experiments, listeners are asked to give their response by writing

or by repeating what they heard orally. This creates three additional sources of

errors, which are largely independent from perceptual errors, and are spelling errors,

speech errors, and listener compliance errors. The latter is when listeners are forced

to produce a response even when they have no response to give, and such a response

is a reflection of guessing as a response strategy. These three additional sources of

errors can potentially add “noise” to the data. While in naturalistic settings, listeners

are not forced to write or repeat anything they heard, it is possible the perceptual

errors are speech errors: that is, the intended utterance was erroneously spoken.

The third and the most important difficulty is regarding the listening conditions.

Experimental data have clearly shown that the more degraded the signal due to

manipulation of the listening condition, the more errors are generated. While the

listening condition is indeed an important factor in perception, there are currently

no benchmark listening conditions that are most representative of our everyday life;

therefore, there is no benchmark of confusability of speech sounds (Bailey and Hahn,

2005). Although the listening conditions are not known for the naturalistic data,

they are nonetheless collected under a wide range of listening conditions, and the

conditions would tend to be more benign than those created in experiments with

extreme manipulations of the signal. While these difficulties are indeed valid, most

cannot be resolved as they are part of the nature of the data. I argue that the

naturalistic data should, in fact, be regarded as the benchmark misperception data

because, firstly, they are as ecologically valid as you can get and, secondly, they

are not collected under specific listening conditions but a wide range of conditions,

thus making them more representative. With the naturalistic data serving as a

benchmark, experimenters can better understand which manipulations are required

to induce a specific misperception pattern by comparing the experimental data with

the naturalistic data. Furthermore, the benchmark corpus can also serve as a starting
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point for identifying the existence or absence of a given pattern before conducting a

controlled experiment in the laboratory.

In sum, this approach of comparing experimental and naturalistic data cannot

only quantify the amount of phonetic biases, but can also serve as a method for eval-

uating the ecological validity of experimental manipulations. Given that our focus is

misperception at the lowest level, the procedure is to first convert the confusion ma-

trices of segments into distance matrices, and then apply correlation tests between

the naturalistic distance matrices and the experimental distance matrices in both

global and structural levels. Finally, the level of ecological validity is indicated by

the strength of the correlation.

3.1.3 Asymmetrical patterns

The method of examining the confusion matrices as distance matrices has a major

disadvantage: it loses any asymmetrical information. By examining the asymme-

tries in both naturalistic and experimental matrices, we can again evaluate to what

extent phonetics/phonology play a role in naturalistic misperception, as well as the

ecological validity of some of the experimental conditions.

Since not all asymmetrical patterns in perception have an immediate theoretical

explanation, we will select three well-known asymmetrical patterns in sound change.

If these asymmetrical patterns are also found in misperception, then they could serve

as evidence for Ohala’s (1989) account of sound change, in which the listeners are a

source. Crucially, if a certain sound change is said to be perceptually motivated, then

it is vital for the asymmetrical patterns to be found in naturalistic conditions, as well

as in a wide range of experimental conditions, and to not simply be experimental

by-products. The method of analysis is to extract the confusion matrices containing

the relevant segments, convert them into proportions, and then we finally apply the

c bias measure (stands for criterion) used in choice theories, which can quantify the
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direction and strength of the asymmetries. If the c biases are found to be consistent

across the naturalistic and experimental data, then the asymmetrical patterns are

robust and reinforces the role of phonetics/phonology in low-level misperception and

the complementarity of the naturalistic and experimental data.

3.1.4 Summary

This chapter is broken down into the following sections. First, Section 3.2 describes

the extraction of the naturalistic data from the corpus. Second, Section 3.3 explains

most of the methods that are used in this chapter in depth. Third, Section 3.4

conducts a descriptive analysis of the data, with the aim of identifying phonetic

biases on a featural level, focusing on the confusion rates of consonants and vowels

separately by place, manner and voicing for the consonants, and by height and

backness for the vowels. Fourth, Section 3.5 and Section 3.6 evaluate the amount of

phonetic biases in the naturalistic confusions for vowels (Section 3.5) and consonants

(Section 3.6) separately. Fifth, Section 3.7 examines the ecological validity of specific

experimental manipulations that are used in experimentally induced misperception

studies by comparing experimental data of previous studies to the naturalistic corpus.

Sixth, Section 3.8 selects three asymmetrical patterns in perception which mirror

certain sound change in progress in English, and examines their robustness across

both the naturalistic and experimental data. Finally, Section 3.9 concludes the

findings and contribution made in this chapter.

3.2 Data extraction

The naturalistic data is the output of Chapter 2 – a phonetically transcribed corpus

which is segmentally aligned. The full corpus contains 5,183 instances of misper-

ceptions. For this chapter, the data contains all sub-corpora and all accent groups,
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with two filters. Firstly, all Mondegreen (misperception of music lyrics) instances

of misperceptions (253 instances) are excluded. Secondly, any non-English misper-

ceptions (69 instances) are excluded. The filtered corpus contains 4,861 instances of

misperceptions.

One might argue that additional filters on the demographics are needed for con-

trolling the effects of dialectal interactions and various factors that could potentially

contribute to misperception. One such filter is to exclude any instances that contain

speakers and listeners whose accents are not North-American English. While this is

possible, the biggest drawback is that it would remove 712 instances, which is a 15%

reduction. Furthermore, practically speaking, there are numerous ways of filtering

the demographics: e.g. 1) including only instances where the accent of the speaker

matches that of the listener, 2) including only the General American accent, and

many others. Testing the effect of each of the possible filters on all of the analyses in

this chapter is computationally demanding, and it would make this chapter impossi-

ble to complete. Therefore, for practical reasons, no filters on the demographics are

applied.

The following 28 consonants are considered: [p, t, k, b, d, g, S, Z, tS, dZ, T, D, s,

z, f, v, h, m, n, N, ô, l, ph, th, kh, R, j, w]. The following 16 vowels are considered:

[i, I, e, E, æ, a, A, 6, O, o, u, 0, 3, 2, U, @]. Finally a gap segment for insertion and

deletion [-] is included.

From the alignment, I exclude those aligned pairs that have a many-to-one or

one-to-many relationship between the intended segment and the perceived segment.

By many-to-one or one-to-many, I mean a complex segment such as [dZ] being aligned

with multiple segments such as [d] and [z]. This leaves us with 90,271 one-to-one

aligned pairs.

Finally, given that the focus of this chapter is to analyse bottom-up pho-

netic/phonological factors in the naturalistic misperception, the aligned pairs are

205



considered without controlling for anything, i.e. context-free, e.g. their phonological

contexts, which words they are from, and many others.

3.3 Method

In this section, we will review a range of analytical techniques that are customary

with confusion matrices of perception data.

3.3.1 From counts to distance

Perceptual confusion matrices are count data. Each row of the matrix is the fre-

quency distribution of responses of a particular stimulus and each column represents

a possible response. The diagonals are the stimuli being perceived correctly (iden-

tical to themselves); the rest of the matrix are the errors. A toy confusion matrix,

containing three consonants, is shown in Table 3.1.

Stim.\Resp. t p k

t 50 10 0
p 4 60 6
k 10 20 40

Table 3.1: A toy confusion matrix in counts for the consonants [t, p, k]: the labels on
the left represent the intended segments, and those on the top represent the perceived
segments; the numbers are the counts of a given intended segment being perceived as
a given perceived segment.

A prevalent method of analysing confusion matrices is to convert them into dis-

tance matrices. A distance matrix contains the pairwise distances between a set of

points (in our case, phones), and it is symmetrical; therefore, the distance between

segment A and segment B is the same as that between segment B and segment A.

This conversion requires a number of steps. Firstly, the count matrix is converted

into a proportion matrix. Secondly, the proportion matrix is converted into a simi-
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larity matrix. Finally, the similarity matrix is converted into a distance matrix. An

overview of the conversion process is given below.

3.3.1.1 Counts to proportions

The first step of this conversion is to convert the counts into proportions (same as

probabilities). This is done for each row of the matrix by dividing each value of the

row with the sum of the row (which is the number of times a particular stimulus is

presented). To illustrate this, the toy confusion matrix in Table 3.1 is now converted

into proportions and is shown in Table 3.2 as a proportion matrix.

Stim.\Resp. t p k

t 0.833 0.166 0
p 0.057 0.857 0.086
k 0.142 0.286 0.571

Table 3.2: A toy confusion matrix in proportions: the labels on the left represent the
intended segments, and those on the top represent the perceived segments; the numbers
are the proportions of a given intended segment being perceived as a given perceived
segment.

3.3.1.2 Proportions to similarity

A proportion matrix can be converted into a similarity matrix. There are a number of

established similarity metrics that are used to perform this conversion. Two prevalent

metrics are suggested in Shepard (1958) and Shepard (1972) respectively, as shown

below.

Sxy =
√

px,ypy,x
px,xpy,y

Figure 3.1: Shepard’s (1958) similarity

Where:

• Sxy is the similarity value between x and y.
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Sxy =
px,y+py,x
px,x+py,y

Figure 3.2: Shepard’s (1972) similarity

• p(x, y) is the proportion of times that the segment x was perceived as the

segment y. It is the frequency of the segment x perceived as the segment y

divided by the frequency of the segment x spoken.

• p(y, x) is the proportion of times that the segment y was perceived as the

segment x. It is the frequency of the segment y perceived as the segment x

divided by the frequency of the segment y spoken.

• p(x, x) is the proportion of times that the segment x was correctly perceived.

It is the frequency of the segment x perceived as the segment x divided by the

frequency of the segment x spoken.

• p(y, y) is the proportion of times that the segment y was correctly perceived.

It is the frequency of the segment y perceived as the segment y divided by the

frequency of the segment y spoken.

Both of these metrics are closely related to Luce’s choice rule (Luce, 1963, p.

113), which models human choice behaviours and, importantly, it can account for

potential response biases – e.g. if one stimulus category has confusions distributed

widely over the possible responses, while another stimulus category has confusions

concentrated between two particular responses (Johnson, 2012, Ch. 5). This bias

could be removed by weighing the confused proportions (the non-diagonal cells in

the matrix) with the correct proportions (the diagonal cells).

Again, for illustration purposes, the previous toy proportion matrix (Table 3.2)

was converted into two similarity matrices, each with one of two metrics, as shown

in Table 3.3 and Table 3.4.
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Stim.\Resp. t p k

t 1 0.115 0
p 0.115 1 0.224
k 0 0.224 1

Table 3.3: A toy similarity matrix with Shepard’s (1958) metric: the labels on the
left represent the intended segments, and those on the top represent the perceived
segments; the numbers are the similarity values of two given segments.

Stim.\Resp. t p k

t 1 0.132 0.102
p 0.132 1 0.260
k 0.102 0.260 1

Table 3.4: A toy similarity matrix with Shepard’s (1972) metric: the labels on the
left represent the intended segments, and those on the top represent the perceived
segments; the numbers are the similarity values of two given segments.

3.3.1.3 Similarity to distance

Finally, a distance matrix can be derived with a similarity matrix. A well-established

metric for estimating a psychological distance is based on Shepard’s law (Shepard,

1972; Shepard, 1987) which states that the perceptual distance between x and y

has a exponential relationship with their similarity, as shown in Figure 3.3. This

law is also found to play a role in other non-perceptual contexts – for instance, in

information theory (Johnson, 2012, Ch. 5).

Dxy = −ln (Sxy)

Figure 3.3: Shepard’s distance (Shepard, 1972; Shepard, 1987)

Where:

• Dxy is the distance value between x and y.

• Sxy is the similarity value between x and y.
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3.3.1.4 Sparse matrix issues

In the previous sections, the overall procedure was outlined for converting confusion

matrices from their count forms to distance. However, the procedure will break down

due to matrix sparsity – that is, the occurrence of zero counts in a confusion matrix.

The procedure can break down, either at the proportion-to-similarity stage or

the similarity-to-distance stage. Let us first take a look at the two similarity metrics

(Figure 3.1 and Figure 3.2).

At the proportion-to-similarity stage, the metrics will break down if the diagonal

cells of a matrix contain zeros. Take Shepard’s (1958) similarity metric, Sxy =√
px,ypy,x
px,xpy,y

, if either px,x or py,y were zero – that is, for a given pair of phones, both

were misperceived by 100% – then Sxy cannot be computed, since one cannot divide

a value by zero. Similarly, Shepard’s (1972) similarity metric, Sxy = px,y+py,x
px,x+py,y

, also

suffers from the same problem but less severely, since it will only break down if both

px,x and py,y are zero.

At the similarity-to-distance stage, the distance metric (Figure 3.3) will break

down if a similarity value is zero, since ln(0) is not defined. Zero similarity values

can arise if px,y and py,x are zeros. Again, Shepard’s (1958) similarity metric will

generate a zero similarity value if either px,y or py,x were zero. Similarly, Shepard’s

(1972) similarity metric will generate zero if both px,y and py,x were zeros.

It is clear that Shepard’s (1972) similarity metric is less susceptible to breaking

down due to sparse matrices, than Shepard’s (1958) metric. This is because Shepard’s

(1958) metric requires all four parameters to be non-zeros, while Shepard’s (1972)

metric minimally requires either px,y or py,x to be non-zero (for the numerator), and

either px,x or py,y to be non-zero (for the denominator). For this reason, Shepard’s

(1972) similarity metric is chosen to be the sole similarity metric used in this thesis.

In any case, even with the more robust Shepard’s (1972) metric, we are still

faced with possible matrix sparsity issues. This calls for a common solution called
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smoothing. The next section will introduce several smoothing techniques, and will

establish an adapted smoothing technique that will be used to obtain any distance

matrix in this thesis.

3.3.1.5 Sparse matrix smoothing

The sparse matrix issue is, in fact, the same zero frequency problem commonly

faced in language models (Jurafsky and Martin, 2008, Ch. 6) and word frequency

estimation (Brysbaert and Diependaele, 2013); therefore, it would be beneficial to

look at the common smoothing techniques that are used: additive smoothing, Witten-

Bell smoothing, and Good-Turing smoothing. Smoothing is performed at the count-

to-proportion stage of the procedure.

All smoothing techniques have two components: discounting and backoff. For

each row of a matrix, any zero frequency cells are modelled as events that have not

happened yet. Discounting is to take the probability mass away from events that

have happened, i.e. the non-zero cells. Backoff is the process of redistributing this

probability mass from discounting to the unseen events, i.e. the zero cells. Different

smoothing techniques are different in terms of which of the non-zero events the

probability mass is taken from, and how we redistribute the probability mass.

3.3.1.5.1 Additive smoothing The simplest kind of smoothing is called Addi-

tive Smoothing. In additive smoothing, a fixed numeric constant is added to all the

cells, both zeros and non-zeros. The two common constants are 1 and a very small

number (e.g. 0.00000001). The former is known as Laplace smoothing and the latter

is known as Lidstone smoothing. The formula for this smoothing is shown in Figure

3.4, and it performs both discounting and backoff.

Depending on the total number of stimuli presented (the sum of each row), addi-

tive smoothing will take too much or too little probability mass from the seen events

(the non-zero cells). For example, if a stimulus category has a small number of pre-
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sentation (e.g. ten), adding 1 to all the responses (e.g. ten possible responses) will

double the overall number of presentation, and the discounted probability mass will

therefore be 50%. While one could adjust the additive constant, the precise value

is unclear; should it be 1, 0.5 or 0.000000001 ? In general, additive smoothing is a

poor smoothing method and the disadvantages are summarised in Gale and Church

(1994).

Pri =
ci+x

N+NZ+Z

Figure 3.4: The new estimated probability with additive smoothing

Where:

• Pri is the estimated probability for each response category i.

• ci is the number of counts for each response category i.

• x is the additive constant (1 for Laplace and a small number for Lidstone).

• Z is the number of zero response categories (the zero cells).

• NZ is the number of non-zero response categories (the non-zero cells).

• N is the total number of responses.

3.3.1.5.2 Good-Turing smoothing The Good-Turing smoothing (Good, 1953;

Gale and Sampson, 1995) relies on the insight that probability mass assigned to

categories with zero or low counts can be re-estimated using the probability mass

assigned to categories with higher counts. Concretely in the context of a confusion

matrix, for each row, all the cells are grouped into frequency bins (frequency of

frequencies); for example, we count the number of cells with zeros, the number of

cells with 1, the number of cells with 2, etc.

While it is a good smoothing technique for language models, it is inappropriate

for confusion matrices. This is because it assumes that frequency bins are relatively
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smooth, which is not the case for confusion matrices due to the small number of

categories. For instance, a 20 by 20 matrix which has 20 response categories will have

many zero/low frequency of frequencies because there will not be enough response

categories for a given count value to occur more than once (Nagata, 1998).

3.3.1.5.3 Witten-Bell smoothing A better smoothing method is the Witten-

Bell smoothing (Witten and Bell, 1991). It is based on the idea that we could

estimate the probability of unseen response categories (the zero response categories)

with the probability of encountering a response category for the first time (the non-

zero response categories). The discounted probability mass of all the zero response

categories is the number of non-zero response categories divided by the number of

total responses plus the number of non-zero response categories, as shown in Figure

3.5.

PrZero =
NZ

NZ+N

Figure 3.5: The total discounted probability mass from Witten-Bell smoothing

Where:

• NZ is the number of non-zero response categories (the non-zero cells).

• N is the total number of responses.

The usual backoff is to divide the discounted probability mass by the number of

zero response categories: that is, to redistribute this mass evenly for all the unseen

events. This is shown in Figure 3.6.

PrZeroi =
NZ

Z×(NZ+N)

Figure 3.6: The probability of each zero response category from Witten-Bell smooth-
ing with an evenly distributed backoff.

Where:
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• PrZeroi is the estimated probability for each zero response category i.

• NZ is the number of non-zero response categories (the non-zero cells).

• Z is the number of zero response categories (the zero cells).

• N is the total number of responses.

Witten-Bell smoothing is especially appropriate for confusion matrices (Nagata,

1998). Nagata (1998) applied Witten-Bell smoothing for confusion matrices of

Japanese orthographic character confusions in optical character recognition processes.

While the size of their matrices (typically 3,000 by 3,000) are much bigger than ours

(typically 20 by 20) in misperception, it is still smaller than the usual kind of data

(e.g. the size of a vocabulary, typically in the region 100,000) that requires smoothing

techniques such as Good-Turing. As mentioned above, both additive smoothing and

Good-Turing are inappropriate for confusion matrices. Furthermore, Witten-Bell

smoothing has been tested with much smaller number of distinct categories in the

domain of confusion matrices; I therefore chose Witten-Bell as my default smooth-

ing technique. In the next section, I will describe a novel weighted backoff method

proposed by Nagata (1998), and a novel adaptation of it that I developed.

3.3.1.5.4 Iterative Witten-Bell smoothing In Witten-Bell smoothing, the

usual backoff of redistributing the unseen probability mass evenly might not be

the best method. Nagata (1998) developed a novel method of applying Witten-

Bell smoothing. The novelty lies in their weighted backoff method. Rather than

distributing the probability mass evenly, their method would weigh the mass by the

similarity between the response category with a zero count and the stimulus category.

Their weighted backoff is argued to be more appropriate because it is unreasonable

to assume all unseen events are equally probable due to confusions being more likely

to occur between similar categories (in their case, orthographic characters).
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In their study, they obtained character similarity independently, computed from

the feature vectors of the characters. Considering our own misperception data, we

could obtain similarity between the categories in each matrix from the confusion

matrix itself. This strongly resembles the iterative alignment method by Wieling and

Nerbonne (2011) as described in Section 2.4.2, which derives a distance matrix from

an initial alignment, which is then fed back to the alignment algorithm as weights; the

process repeats iteratively until there is no further change in the resultant alignments.

This is the basis of my adaptation of Nagata’s (1998) weighted backoff – an iterative

backoff – which is described below.

1. Calculate an initial proportion matrix: the unseen probability mass is first

divided evenly (Figure 3.6).

2. Create the similarity matrix: the smoothed proportion matrix is then used to

calculate a similarity matrix using Shepard’s (1972) similarity metric (Figure

3.2).

3. Recalculate the proportion matrix: the resultant similarity matrix is then used

to weigh the unseen probability mass in Step 1, such that the probability mass

is distributed more/less to zero response categories that have higher/lower

similarity with the target stimulus category.

4. Recalculate the similarity matrix: the smoothed (weighted) proportion matrix

in Step 3 is then again used to calculate another similarity matrix as in Step

2.

5. Step 3 and 4 are repeated until the proportion matrix stabilises.

In order to evaluate the stability of the proportion matrix, for each iteration, a

corresponding distance matrix is calculated using Figure 3.2 and Figure 3.3. We
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employed the Mantel test – a correlation test that is especially appropriate for cor-

relating distance matrices (see Section 3.3.2.1 for more information on this test).

Furthermore, we select a non-parametric version of this test (Kendall’s Tau), which

requires no parametric assumptions, thus allowing us to better compare distance

matrices of various sizes; the smaller the matrix is, the more likely it would violate

parametric assumptions. Using the Mantel test (Kendall’s Tau), the distance matrix

derived from each iteration can be compared to the distance matrix from the pre-

vious iteration, with a correlation coefficient R. While testing this iterative backoff,

I found that the R value usually stabilises at around 100 iterations with a value

fluctuating just below 1 (e.g. 0.98, with 1 being a perfect correlation), which is a

clear sign of stability being reached.

3.3.1.6 Summary

Section 3.3.1 outlined the procedure for converting confusion matrices in counts to

distance matrices. I highlighted the sparse matrix issues and three common smooth-

ing methods that tackle them. Shepard’s (1972) similarity metric was selected to

be the sole metric used in the thesis, since it is less susceptible to sparse matrices.

Finally, I adapted the backoff component of one of the smoothing methods, Witten-

Bell – which has been shown to be one of the more appropriate methods for confusion

matrices – to be able to redistribute the probability mass to the zero response cate-

gories weighted by their similarity with the stimulus category, as learnt inductively

from the matrix itself.

To recap, a given confusion matrix will be converted into proportions, with

any zero response categories smoothed with iterative Witten-Bell smoothing (Fig-

ure 3.3.1.5.4). The resultant proportion matrix will be converted into a similarity

matrix using Shepard’s (1972) metric. Finally, the similarity matrix will be converted

into a distance matrix using Shepard’s law (Figure 3.3).
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3.3.2 Global comparison

3.3.2.1 Mantel correlation: vowels and consonants

The Mantel test (Mantel, 1967) is used to access the global similarity of matrices.

It can be applied to distance matrices of vowels and consonants. The Mantel test

is a correlation test for assessing the similarity between two distance matrices. It

is particularly appropriate for comparing matrices because the values in a distance

matrix are not independent of each other. The null hypothesis is that there is no

relationship between the two matrices. Its correlation coefficient value can be used

to measure the strength of the relationship.

The coefficient of correlation can be computed using Pearson’s r, Spearman’s

rho or Kendall’s tau. The Pearson coefficient is parametric, while Spearman’s rho

and Kendall’s tau are both non-parametric. Because our matrices can sometimes be

quite small, depending on the number of phones the two matrices have in common

(the size of a matrix is restricted to the number of phones we have), I selected one

parametric coefficient (Pearson) and one non-parametric coefficient (Kendall’s tau).

I chose Kendall’s tau over Spearman’s rho, because Spearman’s rho is more prone to

error and discrepancies in the data. If a given pair of matrices were to be similar, then

the different coefficients (and their significance levels) should be relatively similar;

therefore it is important to test both parametric and non-parametric to rule out the

chance of a spurious correlation due to the choice of coefficient.

To obtain a significance level for the Mantel test, a permutation test is required.

The permutation test is done by:

1. Shuffle the rows and columns of one (or both) of the two matrices.

2. Recompute the correlation coefficient using the shuffled matrices.

3. Repeat the last two steps N times.
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4. The p-value (one-tailed) is the number of times the correlation coefficient gen-

erated from shuffled matrices has a value greater than the original correlation

coefficient from the unshuffled matrices.

To conduct this test, I use the implementation of the Mantel test from the vegan

library (Oksanen et al., 2013) in R. It requires the user to specify the choice of the

correlation coefficient, as well as the number of permutations. The minimum number

of permutations to perform is around 1,000; because with 1,000 permutations, the

smallest possible p-value is 0.001. For α = 0.05, the uncertainty is ±1%, which is

acceptable. The more permutations, the lower the uncertainty (i.e. the more the

better); therefore, if time permits (if the computation does not take too long to

run), then a larger number of permutation should be chosen. Having tested the

implementation in vegan, I found that 10,000 permutation is acceptable in terms of

computation time; I therefore chose 10,000 to be the number of permutations for all

the Mantel tests performed in this thesis.

3.3.3 Structural comparison

3.3.3.1 Hierarchical clustering: consonants

Agglomerative Hierarchical Clustering is used to compare and examine the internal

structures of the distance matrices. Unlike the Mantel test (Section 3.3.2.1), hi-

erarchical clustering seeks to form meaningful clusters which are nested using the

distance between any two members (in our case, two phones). It is particularly ap-

propriate for consonants rather than vowels, because consonants are inherently more

complex with more phonetic dimensions than vowels. These phonetic dimensions are

well-presented hierarchically (cf. Goldsmith, 1976; Dresher, 2008). Therefore, I will

only apply hierarchical clustering to consonants and not vowels.

For an extensive review of this method, see Rokach and Maimon (2005). Ag-
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glomerative Hierarchical Clustering builds a hierarchy of clusters using a measure

of dissimilarity (distances), merged from bottom to top. The clustering output is a

dendrogram which has a tree-like structure. A dendrogram reflects how the members

are clustered in a nested structure, and the similarity levels between any two clusters

that were merged.

There are three common strategies of clustering; these strategies are called “link-

ages”. A Complete linkage considers the furthest neighbour, where the distance be-

tween two groups is defined as the distance between their two farthest-apart members.

An Average linkage considers the average neighbour, where the distance between two

groups is defined as the average distance between each of their members. A Single

linkage considers the nearest neighbour, where the distance between two groups is

defined as the distance between their two closest members.

These linkages have different disadvantages. The single linkage is known for its

chaining effect: that is, a few members form a chain/bridge between two clusters

to be merged as a single cluster. The average linkage can generate inappropriate

clusters if the clusters are elongated, because the average linkage takes the average

distance between each of the members of two clusters; then if two elongated clusters

are parallel to each other, it could split each of them in half, and the split portions

(one half from each cluster) would then form an incorrect cluster. The complete

linkage tends to be affected by outliers that do not fit into the overall structure of

the cluster.

There is not a standardised method of choosing linkage type. Some linkage types

are more appropriate than others for a given set of data. As we have mentioned

above, the linkages have different disadvantages, and their severity is dependent on

the structure of the data: for instance, if it contains elongated clusters/outliers or

not. Therefore, it is important to project the underlying structure of the data with

all three common linkage strategies.
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Having established the method for projecting the underlying structure of the

data, we need methods of comparing two dendrograms quantitatively. I selected two

such methods: the cophenetic correlation (Sokal and Rohlf, 1962) and the Baker’s

Gamma index (Baker, 1974).

The cophenetic1 correlation is the correlation between two cophenetic distance

matrices of two dendrograms. The cophenetic distance is the distance at which

clusters are combined in a dendrogram. With a given dendrogram, a cophenetic

distance matrix can be obtained. To compare two dendrograms, we first extract

their corresponding distance matrix, and then we apply a correlation test on the two

cophenetic distance matrices. Two variants of correlation coefficients were chosen:

one parametric coefficient (Pearson) and one non-parametric coefficient (Kendall’s

tau), for the same reason described in Section 3.3.2.1.

The Baker’s Gamma index is a measure of similarity between two dendrograms.

Take two members of a dendrogram: the height of the dendrogram where the two

members are first grouped under the same cluster is identified. The dendrogram is

then horizontally “cut” at this height to give k clusters; therefore, this k value is

associated with the two members. This process is then repeated for all members

pairwise, to obtain their corresponding k values. By doing this for two dendrograms,

we could get two sets of k values. These two sets of k values were then correlated

using Spearman’s rho correlation.

Both the cophenetic correlation and the Baker’s Gamma index are correlation

tests; therefore, their correlation values range from -1 to +1. To obtain a p-value

for these tests, we apply a permutation test. This is done by shuffling the positions

of the members in one (or both) of the dendrograms without changing the structure

of the dendrogram itself; the shuffled dendrograms are then correlated to obtain a

correlation coefficient. This process is then repeated N times. The p-value (one-
1Please note that “cophenetic” is not a typo of “cophonetic”.
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tailed) is the number of times the correlation coefficient generated from shuffled

dendrograms has a value greater than the original correlation coefficient from the

unshuffled dendrograms. The number of permutations was set to 1,000 times, which,

for α = 0.05, the uncertainty is ±1%, which is acceptable.

The R package dendextendRcpp (Galili, 2014) is used to construct the hierachical

clustering trees with the three common linkages, as well as the correlation tests (the

cophenetic correlation and the Baker’s Gamma index).

3.3.3.2 Multidimensional scaling: vowels

Just as hierarchical clustering can be used to project the structure of the distance

matrices of consonants, classical Multi-Dimensional Scaling (MDS) can be used to

project the structure of the distance matrices of vowels. Classical MDS can be

used to visualise the level of dissimilarity (distance) of individual members (in our

case, vowels) by decomposing them into a k-dimensional space (Gower, 1966). It

takes a set of distances and returns a set of points, and the distances between the

points approximately reflect the original distances. With k = 2, a given distance

matrix can be projected into a two-dimensional space. MDS with k = 2 is especially

appropriate for projecting a distance matrix of vowels, because vowels have primarily

two dimensions (frontness and height).

The quality of the projected space can be evaluated visually by comparing it

with an acoustic space, and observing the relative positions of the vowels correspond

to those in an acoustic space. Quantitatively, the percentage of explained total

variance in a two-dimensional solution can be calculated, which is an indicator for

the goodness of fit; 100% would mean that the distance matrix can be fully explained

in a two-dimensional space.
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3.3.4 Interpretation of correlation

The strength level of the correlation coefficients (R/τ values) was interpreted with

the following categorisation (Correlations: Direction and Strength n.d., Table 3). A

perfect correlation has values ±1. A very strong correlation has values ±0.8 to ±0.9.

A strong correlation has values ±0.5 to ±0.8. A moderate correlation has values

±0.3 to ±0.5. A modest correlation has values ±0.1 to ±0.3. A weak correlation

has values below than ±0.1. A zero correlation has the value 0.

3.4 Descriptive statistics of phonetic bias

This section will provide descriptive statistics of the naturalistic confusion data. Fo-

cusing on the rates of substitutions, I aim to identify potential phonetic biases on a

featural level. For consonant substitutions, the rates are divided by place, manner

and voicing. For vowel substitutions, the rates are divided by height and backness. If

phonetic biases were to present on a featural level, then any trend of the substitution

rates could be explained with phonetic accounts of perception.

3.4.1 Overall error rates

Errors can be categorised into three broad types: substitutions (perceiving one seg-

ment for another segment), insertions (perceiving a segment when there isn’t one)

and deletions (failing to perceive a segment). We consider the following 28 conso-

nants: [p, t, k, b, d, g, S, Z, tS, dZ, T, D, s, z, f, v, h, m, n, N, ô, l, ph, th, kh, R, j, w],

and the following 16 vowels: [i, I, e, E, æ, a, A, 6, O, o, u, 0, 3, 2, U, @].

The confusion matrix of the consonants in percentages (proportions × 100) is

shown in Figure 3.7. Similarly, the confusion matrix of the vowels is shown in Figure

3.8. These figures are provided as references, and therefore will not be discussed.

Figure 3.9 summarises the error rates of all segments. The rates are computed
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Figure 3.7: Confusion matrix of consonants with substitution, insertion and deletion
in percentages: the labels on the left are the intended segments, and those on the top are
the perceived segments; the label “-” is an empty segment used to denote insertion (the
last row) and deletion (the last column) errors; the number in the cells represents the
response rate in percentage of a given intended segment as a given perceived segment;
the numbers sum up to 100% in each row.

on consonants + vowels, consonants, and vowels, and on substitution, insertion and

deletion, and a combined rate of substitution, insertion and deletion. The rate

of substitutions of all segments (consonants and vowels) is 10.56%. The rate of

insertions is 3.66%, and the rate of deletions is 5.17%. The differences between all

possible combinations of substitution, insertion and deletion are significant under a
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Figure 3.8: Confusion matrix of vowels with substitution, insertion and deletion in
percentages: the labels on the left are the intended segments, and those on the top are
the perceived segments; the label “-” is an empty segment used to denote insertion (the
last row) and deletion (the last column) errors; the number in the cells represents the
response rate in percentage of a given intended segment as a given perceived segment;
the numbers sum up to 100% in each row.

chi-squared test: a) substitution, insertion and deletion (χ2 = 3949.002, df = 2, p =

2.2× 10−16∗∗∗); b) insertion and deletion (χ2 = 244.527, df = 1, p = 2.2× 10−16∗∗∗);

c) substitution and insertion (χ2 = 3268.22, df = 1, p = 2.2 × 10−16∗∗∗); and d)

substitution and deletion (χ2 = 1818.113, df = 1, p = 2.2× 10−16∗∗∗).

There are more substitution errors than deletion errors and insertion errors com-
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Figure 3.9: Error rate of segments: the three subplots are the rates for consonants +
vowels, consonants, and vowels; within each subplot, the rates are shown for substitu-
tion, insertion and deletion, and a combined rate of substitution, insertion and deletion;
the error rates are printed on top of each bar for clarity.

bined. Deletion errors are, in turn, more common than insertion errors. These

relative error rates make intuitive sense. First of all, listeners can deduce the pres-

ence of a segment from multiple sources – durational information in the acoustics,

phonotactics (e.g. if the listener heard a lax vowel in an English utterance, then

the listener can predict a consonant should follow it), and many others. Therefore,

one would expect more substitution errors than insertion/deletion errors. Second

of all, it is unlikely for listeners to hallucinate a segment when there isn’t one (cf.

perceptual restoration Warren, 1970), than to fail to detect a segment when there is
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one; therefore, one would expect more deletion errors than insertion errors.

By separating the segments into consonants and vowels, we could then find out

whether there are more consonant errors than vowel errors, and if the relative error

rates between substitutions, insertions and deletions hold for consonants and vow-

els separately. In terms of consonant errors, the overall rate is 19.96%, of which

10.14% are substitutions, 4.17% are insertions, and 5.65% are deletions. The differ-

ences between all possible combinations of substitution, insertion and deletion are

significant under a chi-squared test: a) substitution, insertion and deletion (χ2 =

1746.642, df = 2, p = 2.2 × 10−16∗∗∗); b) insertion and deletion (χ2 = 132.0375, df

= 1, p = 2.2 × 10−16∗∗∗); c) substitution and insertion (χ2 = 1505.184, df = 1, p

= 2.2 × 10−16∗∗∗); and d) substitution and deletion (χ2 = 776.1648, df = 1, p =

2.2× 10−16∗∗∗).

In terms of vowel errors, the overall rate is 17.67%, of which 10.39% are substitu-

tions, 2.85% are insertions, and 4.42% are deletions. To summarise, consonants and

vowels together have the following rates: Substitutions (10.56%) > Deletions (5.17%)

> Insertions (3.66%); consonants have Substitutions (10.14%) > Deletions (5.65%) >

Insertions (4.17%). Finally, vowels have Substitutions (10.39%) > Deletions (4.42%)

> Insertions (2.85%). The differences between all possible combinations of substitu-

tion, insertion and deletion are significant under a chi-squared test: a) substitution,

insertion and deletion (χ2 = 1952.875, df = 2, p = 2.2× 10−16∗∗∗); b) insertion and

deletion (χ2 = 119.1773, df = 1, p = 2.2 × 10−16∗∗∗); c) substitution and insertion

(χ2 = 1569.659, df = 1, p = 2.2× 10−16∗∗∗); and d) substitution and deletion (χ2 =

888.4415, df = 1, p = 2.2× 10−16∗∗∗).

Firstly, we found that there are more consonant errors (19.96%) than vowel errors

(17.67%). This difference is significant under a chi-squared test (χ2 = 71.6599, df =

1, p = 2.2×10−16∗∗∗). This is a recurring finding in naturalistic misperception. Even

in the earliest (and smallest, N = 47) naturalistic misperception corpus by Meringer
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(1908), the author found that consonants are more erroneous than vowels. Further-

more, this advantage of vowels is also found in experimentally induced misperception

data. For instance, in Cutler et al. (2004), the error rate for vowels is ≈ 20% and the

error rate for consonants is ≈ 30%. It is worth noting that the vowel errors in the

naturalistic data could have been inflated by how the vowels were transcribed; for

instance, long vowels are treated as two segments. Therefore, the difference between

the rate of the consonant errors and that of the vowel errors is likely to be larger.

Secondly, from the breakdown, we see that the substitution rate is basically

identical for consonants and vowels separately (both around 10%). The difference in

error rates between consonants and vowels comes from insertion errors and deletion

errors. This suggests that, given there is a vowel error, a deletion or an insertion is less

likely than a substitution than in comparison to the context of consonant errors: i.e.

vowels are less likely to be inserted or deleted than consonants. A simple explanation

for why consonants are more erroneous than vowels (especially in terms of insertions

and deletions) is that vowels are acoustically more robust than consonants, and

consonants rely a great deal on vocalic cues in order to be correctly identified in

perception (Wright, 2004). Another explanation is that there are more consonants

than vowels, so the probability of perceiving the correct consonants based on chance

alone is smaller than that of perceiving the correct vowels because of the number of

possible choices is greater for consonants than for vowels. One might even speculate

that the pattern is explicable using the relative importance of consonants and vowels

for making lexical contrasts. In English, consonants carry more functional load than

vowels: that is, they are used more to create lexical contrasts (Nespor, Peña, and

Mehler, 2003; Surendran and Levow, 2004). However, this functional load account, in

fact, predicts the opposite pattern; if consonants are more important lexically, then

they should be perceptually more salient. Therefore, functional load is an unlikely

explanation.
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Finally, the relative error rates between substitutions, insertions and deletions

remain relatively similar when we consider consonants and vowels together, and

separately. This reinforces the explanation of their relative rates given earlier.

Having explored the overall error rates (substitutions, insertions and deletions)

of consonants and vowels, we will now look more closely at substitutions in terms of

place, manner and voicing for consonants and in terms of height and backness for

vowels.

3.4.2 Consonant confusion of PVM

This section will look at consonant confusion separately of place, manner and voicing.

In other words, place confusions, manner confusions, and voicing confusions are

examined. Additionally, the confusion rates with two different sets of aligned pairs

of segments are explored.

The first set is to simply use all the aligned pairs of segments. The second set

is a subset of the first set, which is to only include aligned pairs that have their

immediately adjacent segments correctly perceived, e.g. [k2t] → [kAt] where [k] and

[t] are the same on both intended and perceived.

The second set has the advantage of having more control over the adjacent seg-

ments. By controlling the adjacent segments of a given pair of segments being

correctly perceived, we can eliminate any crossover effects of multiple instances of

misperception; for instance, say an aligned pair of segments is a mismatch (a mis-

perception), and its adjacent segments could also be a mismatch, it is possible that

these mismatches are dependent on each other.

3.4.2.1 Place

The place classification is based on Hayes’s feature set which was extracted from the

software Pheatures Spreadsheet (van Vugt, Hayes, and Zuraw, 2012). Four types of
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place of articulation are used to cover all of the English consonants: Coronal, Labial,

Dorsal, Labial + Dorsal, and Glottal. The place types, Labial + Dorsal and Glottal,

have a narrow coverage – Labial + Dorsal covers only the glide [w], and Glottal

covers only [h].
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Figure 3.10: Confusion rate of place of articulation for consonants: (a) All aligned
pairs and (b) Simple aligned pairs; the confusion rates are shown as bar charts in
percentages, with one bar per place of articulation.

Figure 3.10a and Figure 3.10b show the confusion rates of place with all aligned

pairs and simple aligned pairs respectively. Among all the aligned pairs, the Glottal

place has the highest rate, followed by Labial, then Labial + Dorsal, then Dorsal,

and, finally, Coronal. The rates across both aligned sets (all aligned pairs and simple

aligned pairs) are relatively consistent, with the exception of Labial + Dorsal which

has the lowest rate in the simple aligned pair set (Figure 3.10b).

The trend of place confusion (from the least confusable to the most confusable)

can be summarised as Coronal > Dorsal > Labial + Dorsal > Labial > Glottal. First,

the statistical significance of this trend is examined. The difference between each

level is compared with the mean of the subsequent levels. Concretely, the following
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four contrasts are tested under a chi-squared test: Coronal vs. [Dorsal, Labial +

Dorsal, Labial, Glottal], Dorsal vs. [Labial + Dorsal, Labial, Glottal], Labial +

Dorsal vs. [Labial, Glottal] and Labial vs. Glottal.

The chi-squared test results on the all aligned pairs are summarised below:

• Coronal vs. [Dorsal, Labial + Dorsal, Labial, Glottal]: χ2 = 348.5409, df = 1,

p = 2.2× 10−16∗∗∗

• Dorsal vs. [Labial + Dorsal, Labial, Glottal]: χ2 = 70.7124, df = 1, p =

2.2× 10−16∗∗∗

• Labial + Dorsal vs. [Labial, Glottal]: χ2 = 17.6241, df = 1, p = 2.2× 10−16∗∗∗

• Labial vs. Glottal: χ2 = 0.7496, df = 1, p = 0.3866n.s.

Three out of the four contrasts are highly significant. The insignificant contrast

is Labial vs. Glottal. This suggests that the trend is significant up to Labial, which

can be summarised as: Coronal > (∗∗∗) Dorsal > (∗∗∗) Labial + Dorsal > (∗∗∗) Labial

> (n.s.) Glottal.

This analysis is repeated for the simple aligned pairs. However, the place, Labial

+ Dorsal, is excluded because it clearly diverged from the trend. Three contrasts are

tested: Coronal vs. [Dorsal, Labial, Glottal], Dorsal vs. [Labial, Glottal] and Labial

vs. Glottal.

The chi-squared test results on the simple aligned pairs are summarised below:

• Coronal vs. [Dorsal, Labial, Glottal]: χ2 = 143.0341, df = 1, p = 2.2×10−16∗∗∗

• Dorsal vs. [Labial, Glottal]: χ2 = 54.4878, df = 1, p = 1.564× 10−16∗∗∗

• Labial vs. Glottal: χ2 = 2.6194, df = 1, p = 0.1056n.s.

Two out of the three contrasts are highly significant. The insignificant contrast

is, again, Labial vs. Glottal. This suggests that the trend is significant up to Labial,

which can be summarised as: Coronal > (∗∗∗) Dorsal > (∗∗∗) Labial > (n.s.) Glottal.
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Overall the significance of the trends with all aligned pairs and simple aligned

pairs are confirmed, with the exception of Labial > Glottal. However, the p-value

of this contrast with the simple aligned pairs nearly reached near-significance (p =

0.1056), so there is nonetheless a tendency for Glottal to be more erroneous than

Labial. While the statistical significance of the trend has been confirmed, the trend

still needs to be explained. To do so, the perceptibility of place is first considered.

In terms of perceptibility of place, Jun (2004) proposed a scale of perceptibil-

ity (most perceptible to least perceptible) for unreleased stops – Dorsal > Labial

> Coronal, which is based on the availability of acoustic cues and evidence from

place assimilation. It predicts that Coronal is the most susceptible place to place

assimilation, compared to Dorsal and Labial. Comparing this scale to our trend of

substitution errors of place, they do not match at all, as we would otherwise expect

Coronal to have the highest confusion rate. However, this mismatch is not too sur-

prising, considering this scale of perceptibility is not appropriate for our data because

it is limited to unreleased stops and cannot be generalised to all the consonants.

Alternative to the scale of perceptibility, we could consider predictions using

markedness of place. In terms of markedness of place, Lombardi (2002) added

the Pharyngeal place to Smolensky’s (1993) place markedness scale (marked to un-

marked) which is *Labial, *Dorsal > *Coronal > *Pharyngeal. The Pharyngeal

place is assumed to include the Glottal place (McCarthy, 1994). Lombardi (2002)

proposed this scale to explain consonant epenthesis patterns, with the least-marked

place being the most frequent target of epenthesis. In terms of our substitution data,

this scale predicts that Glottal should have the highest confusion rate, followed by

Coronal, then Labial or Dorsal. This scale correctly predicted the high confusion

rate for Glottal, but failed to predict the rate of Coronal which is actually the lowest,

not the second highest.

Finally, the underspecification account of Coronal makes a different set of predic-
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tions. The Featurally Underspecified Lexicon (FUL) model (Lahiri and Reetz, 2002)

assumes that not all structured features are specified in the phonological represen-

tations of morphemes. Under this model of speech perception, listeners compare an

incoming speech signal with the set of features in the phonological representation,

with either match, mismatch or no-mismatch as outputs. For there to be a match,

the signal and the lexicon must share the same feature. A mismatch requires the

signal and the lexicon not sharing the same feature. Finally, a no-mismatch can

happen in several conditions, but the one that is of current interest is when the

extracted feature from the signal is underspecified in the lexicon. Focusing on the

three major places of articulation, Labial, Coronal and Dorsal, under this model, the

coronal feature is underspecified, and therefore a hypothesis could be made such that:

Pr(Dorsal/Labial → Coronal) > Pr(Coronal → Dorsal/Labial). This means that the

probability of a Dorsal or Labial segment misperceived as a Coronal segment should

be higher than the probability of a Coronal segment misperceived as a Dorsal or

Labial segment. This is motivated by the model as there is a no-mismatch between

Dorsal/Labial (acoustic signal) and Coronal (lexicon) which is underspecified; while

there is a mismatch between Coronal (acoustic signal) and Dorsal/Labial (lexicon).

The no-mismatch condition could contribute to more misperceptions into Coronal.

Given that non-Coronals are more likely to be perceived as Coronal than the

reverse under this model, then we would expect that the confusion rate of Dorsal

and Labial to be higher than that of Coronal, which is indeed the case. The under-

specification hypothesis is indeed confirmed by a previous analysis on a subset of

the naturalistic corpus in Tang and Nevins (2014). This is again confirmed in the

current full naturalistic corpus (using all the aligned pairs), showing that the follow-

ing asymmetrical patterns: Coronal perceived as Dorsal at 1.55% and as Labial at

2.05%, Labial perceived as Coronal at 7.26%, and Dorsal perceived as Coronal at

4.24%.
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In sum, the underspecification of Coronal (Lahiri and Reetz, 2002) can explain

the fact that Labial and Dorsal have higher confusion rates than Coronal. However,

the underspecification account offers no explanations for Glottal, because it is unclear

whether it has its own place feature or not [+Glottal], as it could be equally capture

with [−Labial, −Coronal, −Dorsal], and it is likely to be language-dependent: e.g.

in Arabic, the glottal stop patterns with guttural consonants as a natural class,

therefore suggesting that they have place features (Lombardi, 2002). While it does

not offer an explanation of the Glottal place, Lombardi’s (2002) place markedness

scale can explain the fact that Glottal has a higher error rate than Labial, Dorsal and

Coronal. The place errors found in the naturalistic data can therefore be explained

with a combination of the underspecification of Coronal (Lahiri and Reetz, 2002)

and Lombardi’s (2002) place markedness scale, with the following prediction (least

confusable to most confusable): Coronal > [Labial,Dorsal] > Glottal.

3.4.2.2 Manner

Five types of manner of articulation are considered – Glide, Liquid, Nasal, Fricative,

Affricate and Stop. The precise classifications are as follows:

• Glide [j, w]

• Liquid [l, ô]

• Nasal [m, n, N]

• Fricative [S, Z, T, D, s, z, f, v, h]

• Affricate [tS, dZ]

• Stop [p, t, k, b, d, g, ph, th, kh, R]

[R] is classified as a stop, and not a liquid. This is based on its phonetic (not

phonological) properties. Furthermore, for English, [R] is underlyingly /t, d/ which
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are also stops.

0

5

10

15

Glide Liquid Nasal Fricative Affricate Stop
Manner of Articulation

C
on

fu
si

on
 R

at
e 

(%
)

(a) All aligned pairs

0.0

2.5

5.0

7.5

10.0

Glide Liquid Nasal Fricative Affricate Stop
Manner of Articulation

C
on

fu
si

on
 R

at
e 

(%
)

(b) Simple aligned pairs

Figure 3.11: Confusion rates of manner of articulation for consonants: (a) All aligned
pairs and (b) Simple aligned pairs; the confusion rates are shown as bar charts in
percentages, with one bar per manner of articulation.

Figure 3.11a and Figure 3.11b show the confusion rates of manner with all aligned

pairs and simple aligned pairs respectively. In both sets of aligned pairs, affricate

has the highest confusion rate, and it is a lot higher (at least two times higher) than

all the other manners, and glide has the lowest confusion rate. Besides affricate and

glide, the other manners have different relative rates in both plots. This indicates

that there is a crossover effect of multiple instances of misperception on manner (more

so than place, since only Labial + Dorsal differed). With all aligned pairs (Figure

3.11a), nasal and liquid have the second highest rate (after affricate), followed by

fricative, then stop, and, finally, glide. With simple aligned pairs (Figure 3.11b),

stop and fricative have the second highest rate (after affricate), followed by nasal,

then liquid and finally glide. The pattern with the simple aligned pairs has a striking

resemblance with the sonority scale.
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A typical sonority scale of manner (most sonorous to the least sonorous) is Glide >

Liquid > Nasal > Fricative > Affricate > Stop (Parker, 2002). With the exception of

affricate, the sonority scale of manner matches the error rate with the simple aligned

pairs. In terms of perception, sonority offers an explanation that the more sonorous

a sound is, the more acoustic energy it contains; it is therefore less susceptible to

confusions.

Before we can accept this sonority explanation, the statistical significance of the

sonority trend needs to be tested. Just as the analyses in the place section, the

difference between each level is compared with the mean of the subsequent levels.

However, the manner affricate is excluded from this analysis because it is a clear

outlier. Therefore, the following four contrasts are tested under a chi-squared test:

Glide vs. [Liquid, Nasal, Fricative, Stop], Liquid vs. [Nasal, Fricative, Stop], Nasal

vs. [Fricative, Stop] and Fricative vs. Stop.

The chi-squared test results on the simple aligned pairs are summarised below:

• Glide vs. [Liquid, Nasal, Fricative, Stop]: χ2 = 91.0267, df = 1, p = 2.2 ×

10−16∗∗∗

• Liquid vs. [Nasal, Fricative, Stop]: χ2 = 6.8949, df = 1, p = 0.008644×10−16∗∗

• Nasal vs. [Fricative, Stop]: χ2 = 1.2758, df = 1, p = 0.2587n.s.

• Fricative vs. Stop: χ2 = 0.0234, df = 1, p = 0.8784n.s.

Two out of the four contrasts are highly significant. The insignificant contrasts

are Nasal vs. [Fricative, Stop] and Fricative vs. Stop. This suggests that the trend

is significant up to Nasal, which can be summarised as: Glide > (∗∗∗) Liquid > (∗∗∗)

Nasal > (n.s.) Fricative > (n.s.) Stop. By inspecting the exact p-values, there is a

decreasing trend from Glide to Fricative. While the contrast, Nasal vs. [Fricative,

Stop], is not significant, its p-value (0.2587) is smaller than that of Fricative vs. Stop
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(0.8784). Therefore, this suggests the trend weakens from the most sonorous manner,

Glide, to the least sonorous manner, Stop.

While we could partially explain the confusion patterns in terms of sonority (at

least with the simple aligned pairs), the exceptionally high affricate rate still requires

an explanation. Looking more closely at the segments that the affricates have high

confusions with, we found that [tS] is most frequently confused with [S] at a rate of

6.03%, followed by [dZ] at 4.38% and [th] at 2.46%; similarly [dZ] is most frequently

confused with [d] at a rate of 4.42%, followed by [tS] at 3.98% and [Z] at 1.11%. Of

the three most frequently confused segments, one differs in voicing ([dZ] as [tS], and

[tS] as [dZ]) (which is irrelevant to the high confusion rate of the affricate manner);

crucially, the other two are smaller elements of the affricates. One explanation is that

the high confusion rates with the affricates is due to the fact that it is composed of

the stop portion and the fricative portion; it could therefore be confused as a stop

(e.g. [dZ] > [d]) or a fricative (e.g. [dZ] > [Z]). This consequently doubles the chance

of a confusion; coincidently, the confusion rate of affricate is two to three times as

high as that of either the stop or the fricative.

Perhaps this divergence of affricates with the sonority scale can be mediated

by categorising affricates as strident stops, which would group affricates and stops

together. This is in line with Jakobson, Fant, and Halle’s (1952) treatment of af-

fricates as [strident, -continuant]. Therefore, any stop and affricate confusions would

no longer be counted as being confused. Figure 3.12 shows the outcome of this treat-

ment. The confusion rate of stops is now lower than before, and indeed lower than

that of fricatives. In fact, this treatment created a divergence of stops.

An alternative treatment for the affricates is to consider them as separate seg-

ments: a stop and a fricative. The outcome of this treatment is shown in Figure

3.13. This treatment reduced the confusion rates of both fricatives and stops. Frica-

tive is at a similar rate as nasal, and stop is lower than fricative. Both diverged

236



0

2

4

6

Glide Liquid Nasal Fricative Stop + Affricate
Manner of Articulation

C
on

fu
si

on
 R

at
e 

(%
)

(a) All aligned pairs

0

1

2

3

Glide Liquid Nasal Fricative Stop + Affricate
Manner of Articulation

C
on

fu
si

on
 R

at
e 

(%
)

(b) Simple aligned pairs

Figure 3.12: Confusion rates of manner of articulation for consonants, with stops
and affricates as a single manner category: (a) All aligned pairs and (b) Simple aligned
pairs; the confusion rates are shown as bar charts in percentages, with one bar per
manner of articulation.
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Figure 3.13: Confusion rates of manner of articulation for consonants, with affricates
being split as stops and fricatives: (a) All aligned pairs and (b) Simple aligned pairs;
the confusion rates are shown as bar charts in percentages, with one bar per manner
of articulation.
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from the sonority scale. In sum, these two treatments of affricates cannot improve

the overall fit with the sonority scale. In fact, the simplest treatment is to exclude

affricates. The fit with the sonority scale is strongest with the simple aligned pairs

and the exclusion of affricates. Interestingly, this treatment mirrors the arguments

by Kehrein (2002, Ch. 2) who argues that, from the perspective of contrasts and

natural classes cross-linguistically, the manner affricate should be eliminated as a

phonological concept.

3.4.2.3 Voicing

Finally, the confusion rates of voicing, which is either voiced or voiceless, are ex-

amined. Figure 3.14a and Figure 3.14b show the confusion rate of voicing with all

aligned pairs and simple aligned pairs respectively.
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Figure 3.14: Confusion rate of voicing for consonants: (a) All aligned pairs and (b)
Simple aligned pairs; the confusion rates are shown as bar charts in percentages, with
one bar per voicing category.

Across both plots, the trend is identical with voiceless consonants being more

confusable than voiced consonants. The fact that the trend is identical indicates that
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voicing is not susceptible to crossover effects from multiple instances of misperception:

that is, voicing errors are relatively independent from the phonological environments,

unlike manner errors. This difference between voiced and voiceless is significant under

a chi-squared test for the all aligned pairs (χ2 = 41866.8, df = 1, p = 2.2× 10−16∗∗∗)

and for the simple aligned pairs (χ2 = 60.6747, df = 1, p = 6.733× 10−15∗∗∗).

The error trend (high to low) voiceless > voiced can be explained by the fact

that voiced consonants have more acoustic energy and therefore perceptually more

salient; this also fits with a sonority account because voiced consonants are more

sonorous than voiceless consonants.

3.4.3 Vowel confusion of height and backness

Similar to the consonant section, the confusion rates for vowels are analysed sepa-

rately in terms of Height and Backness (with each dimension having three levels).

The three levels of height are Close, Mid and Open. The three levels of backness are

Front, Central and Back. The precise classifications are as follows:

Height:

• Close [i, I, 0, U, u]

• Mid [e, E, 3, @, O, o, 2]

• Open [æ, a, A, 6]

Backness:

• Front [i, I, e, E, æ, a]

• Central [0, 3, @]

• Back [O, o, 2, U, u, A, 6]
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3.4.3.1 Height

Figure 3.15 shows the confusion rate of vowels by height. Open and close vowels

have similar error rates, and they are not significantly different (χ2 = 0.1926, df =

1, p = 0.6608n.s.). Both open and close vowels have a higher error rate than mid

vowels, and this is significant under a chi-square test. Close and mid vowels are

significantly different (χ2 = 7.5132, df = 1, p = 0.006125∗∗), and open and mid

vowels are significantly different (χ2 = 9.8679, df = 1, p = 0.001682∗∗).

A sonority/acoustic energy account cannot capture this pattern, since it would

predict that open vowels are the least confusable, followed by mid vowels and, finally,

close vowels, because the size of jaw aperture correlates positively with the amount

of acoustic energy.
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Figure 3.15: Confusion rate of vowel height: the confusion rates are shown as bar
charts in percentages, with one bar per height level.

To examine this pattern further, a confusion matrix of vowel height in proportions

is shown in Table 3.5.

Close vowels are perceived as mid vowels at a rate of 6.4%, and as open vowels

at 1.2%. Open vowels are perceived as mid vowels at a rate of 6.1% and as close

vowels at 1.7%. Mid vowels are perceived as close vowels at a rate of 3.7% and as
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Stim.\Resp. Close Mid Open

Close 0.924 0.064 0.012
Mid 0.037 0.933 0.029
Open 0.017 0.061 0.922

Table 3.5: Confusion matrix of vowel height in proportions: the labels on the left
(stimulus) are the intended height, and the labels on the top (response) are the perceived
height.

open vowels at 2.9%. These proportions indicate that close vowels are more likely

to be perceived as mid vowels (6.4%) than as open vowels (1.2%), and the difference

in proportions is substantial and statistically significant (χ2 = 323.1237, df = 1,

p = 2.2 × 10−16∗∗∗). Open vowels are more likely to be perceived as mid vowels

(6.1%) than as close vowels (1.7%), and the difference in proportions is substantial

and statistically significant (χ2 = 186.1061, df = 1, p = 2.2× 10−16∗∗∗) (just as the

confusions of close vowels). The mid vowels, however, do not have a strong perpetual

bias towards open vowels (3.7%) or close vowels (2.9%), with similar proportions of

confusions; even though this difference is statistically significant (χ2 = 14.0532, df =

1, p = 0.0001777∗∗∗), the difference is a lot smaller than the confusions of close/open

vowels, as indicated by the smaller χ2 value (14.0532 compared to 323.1237/186.1061)

or the smaller p-value (0.0001777 compared to 2.2×10−16). These confusion patterns

can be explained with Steriade’s (2001) account of perceived similarity.

Under this account, the probability of a confusion between two phones is a func-

tion of the perceived similarity of the two phones. This can be formulated as

Pr(Input → Output) = f(Perceived Similarity(Input, Output)). The acoustic

distances between close and mid vowels, and open and mid vowels is shorter than

the distances between close and open vowels. The confusion rates between close and

mid vowels, and open and mid vowels are higher than the confusion rates between

close and open vowels; this pattern can be explained using the relative perceived

similarity between vowel height by assuming that acoustic distances are correlated
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with perceived similarity. Under this account, the Perceived Similarity of {Open,

Mid} should be similar to that of {Close, Mid}, and both should be more similar

than that of {Close, Open}. This perfectly predicts our proportions in Table 3.5.

The proportion (which is the same as probability) of [Close → Mid] is 6.4% which

is similar to that of [Open → Mid] (6.1%); both proportions are higher than that

of [Close → Open] (1.2%) and that of [Open → Close] (1.7%). In sum, Steriade’s

(2001) account of perceived similarity can predict the probability of confusion from

a given vowel height to other vowel heights.

However, the perceived similarity account cannot explain the fact that mid vowels

are less confusable than close and open vowels. From the proportion matrix, an

asymmetrical pattern can be observed, such that close vowels are perceived as mid

vowels (6.4%) more often than the reverse (3.7%); similarly, open vowels are perceived

as mid vowels (6.1%) more often than the reverse (2.9%). The low substitution

error rate of mid vowels is a reflection of this asymmetrical pattern. I have no

immediate explanation for this perceptual bias from open/close vowels to mid vowels.

An explanation for this pattern is provided later in Chapter 4, Section 4.2.3.

3.4.3.2 Backness

Figure 3.16 shows the confusion rate of vowels by backness. Back vowels are the

most confusable, followed by central vowels and finally front vowels. Again, the

sonority account fails to capture this trend, as it would predict that back vowels are

less confusable, followed by mid vowels and finally front vowels, because of the size

of the oral cavity (back vowels have the largest, front vowels have the smallest).

The statistical significance of this trend is examined. The difference between

each level is compared with the mean of the subsequent levels. The following two

contrasts are tested under a chi-squared test: Front vs. [Central, Back] and Central

vs. Back.
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The chi-squared test results are summarised below:

• Front vs. [Central, Back]: χ2 = 17.7034, df = 1, p = 2.582× 10−05∗∗∗

• Central vs. Back: χ2 = 8.2595, df = 1, p = 0.004054∗∗

The chi-squared test results confirm the sonority trend, since both contrasts are

statistically significant.
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Figure 3.16: Confusion rate of vowel backness: the confusion rates are shown as bar
charts in percentages, with one bar per backness level.

Stim.\Resp. Front Central Back

Front 0.945 0.027 0.028
Central 0.040 0.939 0.021
Back 0.048 0.024 0.928

Table 3.6: Confusion matrix of vowel backness in proportions: the labels on the left
(stimulus) are the intended backness, and the labels on the top (response) are the
perceived backness.

To examine this pattern further, a confusion matrix of vowel backness in propor-

tions is shown in Table 3.5. The back vowels are perceived as front vowels at a rate

of 4.8%, and as central vowels at 2.4%. This difference is statistically significant
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(χ2 = 65.726, df = 1, p = 5.182 × 10−16∗∗∗); therefore, there are significantly more

back-to-front errors than back-to-central errors.

Central vowels are perceived as front vowels at 4%, and as back vowels at 2.1%.

This difference is statistically significant (χ2 = 54.7024, df = 1, p = 1.402×10−13∗∗∗);

therefore, there are significantly more central-to-front errors than central-to-back

errors.

Front vowels are perceived as central vowels at 2.7% and as back vowels at 2.8%.

This difference is statistically insignificant (χ2 = 0.6749, df = 1, p = 0.4113n.s.);

therefore, the number of front-to-central errors is similar to the number of front-to-

back errors.

Overall, we see a pattern of vowel fronting, with back vowels being perceived as

front vowels, and central vowels being perceived as front vowels more often than the

reverse direction (backing). Unlike the analyses with vowel height, the perceived

similarity account does not seem to play a role here, since we could otherwise expect

the rate of [Front → Central] to be higher than that of [Central → Back], the rate of

[Central → Front] to be of a similar rate as that of [Central → Back], and the rate of

[Back → Central] to be higher than that of [Back → Front]. However, none of these

predictions are correct. This observation of perceptual vowel fronting is examined

in depth in a later section, Section 3.8.4, in which I argue that this fronting pattern

supports the third principle of vowel chain shifts (Labov, 1994a, p. 116).

3.4.4 Conclusion

In this section, a descriptive analysis of the naturalistic confusion matrix was con-

ducted. Crucially, phonetic patterns in the rates of segmental confusions on a featural

level were identified.

In the first section, the overall error rates were analysed. There are more substi-

tution errors than insertion and deletion errors, and deletion errors in turn are more
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frequent than insertion errors. This pattern is true when considering both conso-

nants and vowels together, or separately. The pattern of having more substitutions

than insertions + deletions can be explained by how the presence of a segment is

supported by both multiple cues (acoustics, phonotactics, and others). Since listen-

ers are unlikely to imagine a non-existent segment, there are more deletions than

insertions. Furthermore, there are more consonant errors than vowel errors. This

difference is driven mainly by a higher insertion and deletion rate of the consonants

than of the vowels, thereby highlighting the perceptual salience of vowels, as well as

how consonants rely hugely on transitional cues in the vowels (Wright, 2004).

The substitution rate of consonants was then analysed by place, manner and

voicing. In terms of place, the confusion rates have the following trend (low to high)

Coronal > Dorsal > Labial + Dorsal > Labial > Glottal, which is best explained

using a combination of the underspecification of coronal (Lahiri and Reetz, 2002)

and Lombardi’s (2002) place markedness scale. In terms of manner, after restricting

the adjacent segments, the confusion rates have the following trend (low to high)

Glide > Liquid > Nasal > { Fricative, Stop } > Affricate. With the exception of

Affricate, the trend matches the sonority scale with more sonorous manners being

more confusable. In terms of voicing, voiceless consonants are more confusable than

voiced consonants, which again can be explained using a sonority/acoustic energy

account.

Finally, the substitution rate of vowels was analysed by height and backness. In

terms of height, open and close vowels are more confusable than mid vowels, and,

more specifically, the open and close vowels are mainly confused with the mid vowels.

This can be explained with Steriade’s (2001) account of perceived similarity, and not

with sonority. In terms of backness, back vowels are the most confusable vowels,

followed by mid vowels, then finally front vowels. A closer analysis of the confusions

in proportion shows that there is an overall perceptual bias of back/central vowels
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being perceived as front vowels, and this is addressed in a later section of this chapter

(Section 3.8.4).

3.5 Analyses of phonetic bias in vowel confusions

To establish the phonetic bias in the vowel misperception in the naturalistic corpus,

it would be informative to compare them with distances that are phonetically based.

3.5.1 Acoustic distances

To obtain a baseline of vowel distances, we will look for acoustic measurements

obtained from two classic acoustic studies of American English vowels.

The first set of large-scaled measurements were obtained by Peterson and Barney

(1952). In this study, they recorded 76 speakers, including 33 men, 28 women and

15 children. Each speaker produced the ten vowels [i, I, E, æ, A, O, U, u, 2, 3~] in

the context of /hVd/ twice. This amounts to 1,520 recorded words. In terms of the

demographics of the speakers, the majority of the women and children grew up in

the Middle Atlantic speech area, while the male speakers were more heterogeneous

demographically and the majority spoke General American.

The second mega study was a follow-up study by Hillenbrand et al. (1995), con-

ducted ≈ 40 years after Peterson and Barney (1952). They recorded 139 speakers,

including 45 men, 48 women, and 46 children. Each speaker produced the twelve

vowels [i, I, e, E, æ, A, O, o, U, u, 2, 3~] in the context of /hVd/, twice for the chil-

dren, and three times for the men and the women. Notably, 87% of the speakers

were raised in Michigan’s lower peninsula. The speakers underwent an extensive

dialect screening process to ensure that their production of the vowels in questions

are contrastive.

The F1 and F2 formant values (Hz) of the vowels recorded in these two studies
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were extracted from the publications. Only the average values for each of the three

populations (men, women and children) were available. In order to obtain an average

representation of American English vowels, the formant values of both studies are

further averaged across studies for men, women and children separately, with the

exception of the vowels that exist only in Hillenbrand et al. (1995), which can only

be taken directly from one study. These formant values averaged across studies are

further averaged across the three populations. The resultant values are therefore an

averaged representation of twelve American English vowels [i, I, e, E, æ, A, O, o, U, u,

2, 3~], spoken by 215 speakers.

To obtain acoustic distances from formant values, we first converted the formant

values from Hertz to Mels. The choice of the Mel scale over the Bark scale (Traun-

müller, 1990) is arbitrary. The resultant conversion will be similar with either scale.

Crucially, they can both capture the fact that human perception of frequency is non-

linear (Stevens, Volkmann, and Newman, 1937). There are multiple versions of the

Mel-scale formula; a popular version published in O’Shaughnessy (1987) was chosen,

m = 1127.01048 × ln(1 + (f/700)), where f is a formant value in Hertz and m is

the converted value in Mels. A distance matrix of the vowels was then calculated

using the Euclidean distance, which is an established distance metric for converting

relative formant values to distances (Yilmaz, 1967; Yilmaz, 1968).

3.5.2 Perceptual distances

To obtain perceptual distances of American English vowels, I extracted a vowel

confusion matrix from the naturalistic data. Only vowel to vowel aligned pairs were

considered. Furthermore, on top of the monophthongs (long or short), only the

nucleus, and not the offglides, of the diphthongs were included, as shown in Figure

2.2, with 16 vowels [i, I, e, E, æ, a, A, 6, O, o, u, 0, 3, 2, U, @] . The vowel confusion

matrix is therefore 16 by 16.
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Since the acoustic distances (from Hillenbrand et al., 1995; Peterson and Barney,

1952) were primarily calculated from vowels of the General American accent, I ex-

cluded [0] and [6] from the vowel set as they are primarily from the British accents

in the corpus. The resultant confusion matrix is 14 by 14. This confusion matrix

was then converted into a distance matrix using the procedure described in Section

3.3.1. Crucially, this distance matrix is perceptually grounded because it is based

on Shepard’s law which best captures the relationship between perceptual distance

and confusion similarity.

3.5.3 Comparison – acoustic and perceptual distances

This section compares the acoustic and perceptual distances, obtained from acous-

tic measurements of formant values from experimental studies, and confusability of

vowels from the naturalistic corpus.

Since the naturalistic distance matrix contains more vowels than the acoustic

distance matrix, we removed the additional vowels [@] and [a] from the naturalistic

distance matrix. Furthermore, the vowel [3~] in the acoustic distances is treated as

[3] in order to match with the nurse vowel in naturalistic distance matrix. With

these two treatments, both matrices now contain the same set of vowels.

3.5.3.1 Global similarity

To analyse the global similarity of the acoustic and perceptual distances, we employ

the Mantel test, as described in Section 3.3.2.1. With Pearson coefficient (a paramet-

ric test), the correlation is r = 0.6831 (p = 9.999× 10−5 with 10,000 permutations).

With Kendall rank coefficient (a non-parametric test), the correlation is τ = 0.4713

(p = 9.999× 10−5 with 10,000 permutations). Both parametric and non-parametric

correlation tests show that the perceptual distances correlate positively with acoustic

distances, at a strong and statistically significant level.
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3.5.3.2 Structural similarity

To analyse the structural similarity of the acoustic and perceptual distances, we

employ MDS, as described in Section 3.3.3.2.

MDS places each vowel at an optimal position relative to the rest of the vowels

in a two-dimensional space. This is applied to the two distance matrices separately.

Figure 3.17a and 3.17b show the relative positions of the vowels using acoustic dis-

tances and perceptual distances respectively. The acoustic distances can be projected

perfectly into a two-dimensional space because it is originally based on two dimen-

sions: two formants, F1 and F2. This means the visualisation using the acoustic

distances can explain 100% of the variance in the original acoustic distances. Rela-

tive to the acoustic distances, the perceptual distances can explain 52% of variance

using a two-dimensional space.

i

ɪ

e

ɛ

æ

ɑ

ɔ

o
ʊ

u

ʌ

ɜ

(a) Acoustic distance visualisation

i

ɪ

e

ɛ

æ
ɑ

ɔ

o

ʊ

u

ʌ
ɜ

(b) Perceptual distance visualisation

Figure 3.17: Two-dimensional projection of the relative positions of American En-
glish vowels using their acoustic (a) and perceptual (b) distances (naturalistic). The
visualisation in (a) explains 100% of the variance in the original acoustic distances,
while the visualisation in (b) explains 52% of the variance in the original perceptual
distances.

Both visualisations share strikingly similar structures with the IPA chart as shown
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æ

UI

•3•

••

•• u••

o••

O•2•

•A•••

•E•

•e•

•i•

Table 3.7: IPA vowel chart containing twelve American English vowels [i, I, e, E, æ,

A, O, o, U, u, 2, 3]: only the nucleus portion is shown for diphthongs and long vowels.

in Figure 3.7. The acoustic visualisation has a stronger resemblance than the percep-

tual visualisation, which is not surprising as it is based on formant measurements.

First of all, the perceptual visualisation has highly acceptable positions of four cor-

ner vowels [i, æ, A, u]. Second of all, excluding the central vowels [3, 2], the relative

heights are perfectly projected for the front vowels with [i, I, e, E, æ], and the back

vowels with [u, U, o, O, A], ordered in decreasing height.

The perceptual visualisation nonetheless has a number of divergences from the

IPA chart (and indeed the acoustic visualisation). Firstly, the most striking diver-

gence is the position of [3] relative to [2], as it is both lower and backer than the

expected. Secondly, [U] is too far back, relative to [u]. Thirdly, [o] and [O] are

both lower than expected, especially relative to [2]. Looking more closely, the over-

all divergence can be seen as [3, U, o, O] having a more compact perceptual space

“shrunk” to the bottom right. This overall divergence cannot be readily explained.

The first possibility is that [3] in rhotic accents often carries retroflexion, [3~], which

is absent in the other vowels; therefore, the inclusion of [3] could have an impact on

the relative distances with the rest of the vowels beyond frontness and height. The

second possibility is that [3] could, in fact, be rounded in specific accents, and this

feature was not captured in the transcription due to symbolic simplifications (see

Section 2.2.7 for the simplifications of the vowel sets of various accents found in the

corpus); therefore, the rounded [3] is found to be perceptually closer to the other
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rounded vowels [U, o, O]; this means that one of the two dimensions in the projection

is not frontness, but a mixture of frontness and roundedness or simply roundedness,

because front vowels in English are generally not rounded, whereas the back vowels

are almost all rounded. Finally, there is a divergence with the pair /I/ and /e/, such

that the distance between /I/ and /e/ is much closer acoustically than perceptually;

however, I have no immediate explanation for this divergence.

3.5.4 Conclusion

This section computed the perceptual distances of American English vowels calcu-

lated from the perceptual confusability in the naturalistic corpus, and subsequently

compared them with acoustic distances using two metrics.

Firstly, the global similarity between acoustic and perceptual distances were anal-

ysed using the Mantel test and there is a strong and significant relationship between

the two (r = 0.6831 and τ = 0.4713, p < 0.0001 with 10,000 permutations). Secondly,

the structural similarity between two were analysed using MDS. By projecting dis-

tances into a two-dimensional plane, the relative positions of the vowels were shown.

The projected plane with the perceptual distances bears a strong resemblance with

both the acoustic space and the IPA chart in terms of their front/backness and

height.

Together, this indicates that on both global and structural levels perceptual con-

fusions in a naturalistic setting has a strong phonetic (acoustic) bias. This is a

surprising finding, since the confusion matrix was extracted regardless of any con-

texts; for instance, the vowels could be from any words, and they could have any

phonological environments (suprasegmental and segmental). Despite all the top-

down influences (which are examined in Chapter 4), listeners still heavily rely on

phonetic/acoustic similarity between vowels in everyday speech processing, whether

it be successful or not.
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3.6 Analysis of phonetic bias in consonant confu-

sions

To establish the phonetic bias in the consonant misperception in the naturalistic

corpus, it would be informative to compare them with distances that are phonetically

based.

3.6.1 Featural distances

Unlike the vowel analyses, the phonetic relationship between consonants are complex

and cannot be acoustically measured with only a few phonetic measurements such

as formant values in the case of vowels, because consonants have multiple acoustic

cues, and cues are different for each type of consonants; therefore, it is not easy to

compare them directly. Alternatively, we could describe the phonetic properties of

a consonant using distinctive feature systems, and use them to compute the relative

similarity (and therefore distances) of consonants.

Hayes’s feature set was used as the chosen feature system. This feature set was

extracted from the software Pheatures Spreadsheet (van Vugt, Hayes, and Zuraw,

2012). The feature set contains the following features: [syllabic, stress, long, con-

sonantal, sonorant, continuant, delayed release, approximant, tap, trill, nasal, voice,

spread glottis, constricted glottis, labial, round, labiodental, coronal, anterior, dis-

tributed, strident, lateral, dorsal, high, low, front, back, tense]. It is worth noting

that these features are primarily articulatory, and not acoustic nor perceptual. A

feature set that is acoustically/perceptually grounded might be more appropriate for

establishing a baseline of phonetic distances for comparing with perceptual distances.

The simplest way of computing phonetic distances would be to count the number

of distinctive features a given pair of segments have in common – in other words,

feature counting. However, it has been suggested that this is an empirically inad-
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equate metric (Frisch, 1996). Alternatively, Frisch (1996) and Frisch, Broe, and

Pierrehumbert (1997) proposed a natural class based metric of similarity between

two phones. Using natural classes makes intuitive sense, because featural represen-

tation of phones were originally used to describe natural classes, which is a category

consisting of a group of phones that plays a role in phonological patterns (Kenstow-

icz, 1994; Padgett, 2002). Frisch’s metric is dependent on the phonological inventory

(which phones exist in the language) and the structure of the inventory (as described

by a given feature set). For a given pair of phones, the similarity is defined as

the number of natural classes shared by the two phones, divided by the sum of

the number of shared and unshared natural classes, as shown in Figure 3.18. To

compute Frisch’s similarity, the Segmental similarity calculator program by Albright

(2006) was used with the following settings: 1) The type of natural class descriptions

was chosen to be fully specified (rather than contrastive underspecification) and 2)

The maximal superclass (the class that includes all known segments) was excluded.

Frisch’s similarity has been tested against behavioural data, such as English speech

errors, phonotactic constraints in Arabic, and acceptability ratings of non-words in

Arabic. Frisch found that this metric is superior to other feature-counting metrics

across a range of behavioural data; however, it is unclear whether it would be equally

superior for perceptual data. Beyond the empirical validity, Frisch’s similarity has

an advantage of being insensitive to feature redundancy. In sum, Frisch’s similarity

is an adequate, if not ideal, choice of similarity metric that uses feature sets.

Similarity = Shared Natural Classes
Shared+Unshared Natural Classes

Figure 3.18: Frisch’s similarity (Frisch, 1996; Frisch, Broe, and Pierrehumbert, 1997)

For the present analysis, 26 phones were included: [p, t, k, b, d, g, S, Z, tS, dZ,

T, D, s, z, f, v, h, m, n, N, ô, l, ph, th, kh, R], excluding [j] and [w]. The reason for

excluding the glides is that in the naturalistic corpus, glides are used as offglides of

diphthongs, which means some of glides are consonantal and some are vocalic (in the
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sense that they form part of a vowel). Given that our analysis focuses on consonants,

these two ambiguous phones were excluded.

The computed similarity matrix of the 26 phones was then converted into dis-

tances using Shepard’s distance metric (Figure 3.3).

3.6.2 Perceptual distances

To obtain perceptual distances of English consonants, I extracted a consonant con-

fusion matrix from the naturalistic data. Only consonant to consonant aligned pairs

were considered. I considered the consonants used in the transcription as shown in

Figure 2.1, excluding [j] and [w] for the reason mentioned in the previous section

(Section 3.6.1). In total, 26 phones were considered: [p, t, k, b, d, g, S, Z, tS, dZ, T, D,

s, z, f, v, h, m, n, N, ô, l, ph, th, kh, R].

This confusion matrix (26 by 26) was then converted into a distance matrix using

the procedure described in Section 3.3.1.

3.6.3 Comparison – featural and perceptual distances

3.6.3.1 Global similarity

To analyse the global similarity of the featural and perceptual distances, we employ

the Mantel test as described in Section 3.3.2.1. With the Pearson coefficient, the

correlation is r = 0.2709 (p = 1.999 × 10−4 with 10,000 permutations). With the

Kendall rank coefficient, the correlation is τ = 0.2469 (p = 9.999× 10−5 with 10,000

permutations). Both parametric and non-parametric correlation tests show that the

perceptual distances correlate positively with featural distances, at a modest and

statistically significant level.
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3.6.3.2 Structural similarity

To analyse the structural similarity of the featural and perceptual distances, we

employ the agglomerative hierarchical clustering technique, as described in Section

3.3.3.1. This method seeks to merge phones hierarchically from bottom to top. The

resultant “tree” reflects the hierarchical structure of the consonant distances. We ap-

ply all three common linkages (clustering strategies): Complete, Average and Single.

The hierarchical trees for featural and perceptual distances are visualised together

in a single plot per linkage method. Figure 3.19, Figure 3.20 and Figure 3.21 are

the plots with Complete, Average and Single linkages respectively. These plots are

so-called tanglegrams, plotted using the R package dendextendRcpp (Galili, 2014).

In each of these tanglegrams, the tree on the left is based on featural distances, and

the tree on the right is based on perceptual distances. To best visualise the difference

between the two trees, lines connecting the leaves (the individual phones) between

the two trees are drawn in the middle. Furthermore, the edges of the branches that

are unique to each tree are shown as dotted lines, thus highlighting the differences

between the two trees.

Beginning with complete linkage (Figure 3.19), we will first examine the percep-

tual tree on the right. The two major clusters (the first split) of the tree are [S, b,

D, dZ, f, h, tS, v, Z, T, ph, th, kh] and [ô, g, d, k, l, m, n, N, p, s, t, z, R]. It is clear

that, on the whole, they are divided into phones with frication and those without,

with the exceptions of [s, z, b]. Therefore, the first split of the tree indicates that

frication (or perhaps the distinctive feature [±continuant]) plays a important role

in perception. Interestingly, the aspirated voiceless stops are amongst the frication

group, highlighting that the aspiration of the stops is, in fact, a form of frication,

reinforcing the idea of distinguishing between the aspirated voiceless stops and the

unaspirated/voiced stops in the data. The non-frication branch is then split into

two more clusters further down the tree [ô, l, m, n, N, s, z] and [g, d, k, p, t, R],
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9: h
24: tʰ
23: pʰ
25: kʰ
19: v
8: f
4: b
15: p
6: ð
21: ʒ
20: z
7: dʒ
5: d
18: tʃ
17: t
22: θ
1: ʃ
16: s
26: ɾ
11: l
2: ɹ
3: ɡ
10: k
14: ŋ
12: m
13: n

9: h
24: tʰ
23: pʰ
25: kʰ
21: ʒ

1: ʃ
7: dʒ
18: tʃ
6: ð

19: v
4: b
8: f

22: θ
15: p
17: t
5: d

26: ɾ
3: ɡ

10: k
20: z
16: s
11: l
2: ɹ

14: ŋ
12: m
13: n

Figure 3.19: Hierarchical clustering of featural distances (left) and perceptual dis-
tances (right) with Complete linkage: distances are represented as trees; the lines in
the middle are drawn to connect the leaves (the individual phones) between the two
trees; the edges of the branches that are unique to each tree are shown as dotted lines.

which can be categorised as sonorants and non-sonorants, with the exception of [s,

z]. Among the sonorant branch (ignoring [s, z]), there is a clear division between

nasals [m, n, N] and liquids [ô, l]. The further splits under the non-sonorant branch

are not immediately interpretable. Switching to the frication branch, the immediate

split creates two groups [b, D, v, T, f] and [S, dZ, h, tS, Z, ph,th, kh]. The first group

contains “weak”/non-sibilant fricatives, while the second group contains affricates
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and post-alveolar sibilants, as well as aspirated voiceless stops and glottal plosive.

One interpretation of these two groups is duration (long and short) because, firstly,

affricates and aspirated stop are more complex, both containing a plosive phone

followed by a fricative phone and, secondly, sibilants [S, Z] have longer noise dura-

tion than non-sibilants. Under the long duration branch, there is a further division

between the affricates and sibilants, and the aspirated stops and [h], which can be

interpreted as [± spread glottis]. Finally, all the affricates and sibilants (including

[s, z], which clustered with the sonorant branch) are clustered together by [± voice]

on the finest cluster level: [tS, dZ], [S, Z] and [s, z].

From examining the structure of the perceptual tree, it is clear that its cluster-

ing pattern is a function of phonetic similarities. We identified multiple phonetic

dimensions, such as sonorant, spread glottis, voicing, frication, nasality, liquid, sibi-

lancy, and duration. Interestingly, some of these dimensions were also identified in

the classic experimental study by Miller and Nicely (1955). In Miller and Nicely

(1955), they proposed and analysed five articulatory dimensions: voicing, nasality,

affrication, duration and place of articulation. These dimensions were chosen in or-

der to reasonably summarise the pattern of confusion in their data. Their affrication

dimension is frication, distinguishing between [f, T, s, S, v, D, z, Z] from the stops

and nasals. Their duration dimension differs from ours; they classified [s, z, S, Z] as

being longer than other phones in their study, without including aspirated stops. Of

the five dimensions proposed by Miller and Nicely (1955), our hierarchical clustering

reflect at least three (voicing, nasality, (af)frication), and maybe four if we were to

include duration, which has a different definition from ours. Finally, place of articu-

lation was found to be a poor dimension in Miller and Nicely (1955), and this is also

reflected by its absence in the hierarchical structure.

In comparison to the featural tree, only three sub-branches have a near-direct

correspondence: the nasal branch [m, n, N], the liquid branch [ô, l] and the [+ spread
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glottis] branch [h, ph,th, kh]. To better quantify the similarity between the featural

tree and the perceptual tree, multiple correlation analyses are applied. First two

variants of cophenetic correlation test are applied. With the Pearson coefficient, the

correlation is r = 0.1149 (p = 0.036 with 1,000 permutations). With the Kendall

rank coefficient, the correlation is τ = 0.1286 (p = 0.02 with 1,000 permutations).

Furthermore, we apply Baker’s Gamma Index, which has the value r = 0.1560 (p =

0.013 with 1,000 permutations). All three correlation measures (parametric cophe-

netic correlation, non-parametric cophenetic correlation and Baker’s Gamma) show

that the hierarchical tree of perceptual distances correlates positively with the tree

of featural distances, at a modest and statistically significant level.

Moving onto the trees with average linkage (Figure 3.20), we will again focus

on the perceptual tree on the right. The structure of the tree is nearly identical to

that with complete linkage (Figure 3.19) with one major divergence of the branch

containing [g, d, k, p, t, R]. This branch was clustered with the sonorant branch in

the tree with complete linkage, whereas in the current tree, it is clustered with [b,

v, T, f]. To assess the similarity between the two perceptual trees (complete and

average), I again applied the three correlation measures, which yielded the following

correlations: cophenetic (Pearson) r = 0.5561 (p = 0 with 1,000 permutations),

cophenetic (Kendall rank) τ = 0.4518 (p = 0 with 1,000 permutations), and Baker’s

Gamma Index, r = 0.5062 (p = 0 with 1,000 permutations). The correlation measures

all indicate that there is a positive correlation between the two linkages, at a strong

and statistically significant level. The similarity between the trees with the two

linkages, complete and average, indicates that the resultant structure is relatively

stable.

Comparing the perceptual tree to the featural tree with average linkage, we see

that only one sub-branch has a direct correspondence, which is the nasal branch.

To quantify the similarity between the featural tree and the perceptual tree with
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3: ɡ
10: k
25: kʰ
19: v
8: f
4: b
15: p
23: pʰ
5: d
6: ð
21: ʒ
20: z
7: dʒ
17: t
18: tʃ
22: θ
1: ʃ
16: s
24: tʰ
2: ɹ
26: ɾ
11: l
14: ŋ
12: m
13: n
9: h

6: ð
19: v
4: b
8: f

22: θ
3: ɡ

10: k
15: p
17: t
5: d

26: ɾ
21: ʒ

1: ʃ
7: dʒ
18: tʃ

25: kʰ
23: pʰ
24: tʰ

9: h
20: z
16: s

2: ɹ
11: l

14: ŋ
12: m
13: n

Figure 3.20: Hierarchical clustering of featural distances (left) and perceptual dis-
tances (right) with Average linkage: the lines in the middle are drawn to connect the
leaves (the individual phones) between the two trees; the edges of the branches that
are unique to each tree are shown as dotted lines.

average linkage, we applied multiple correlation analyses, which yielded the following

correlations: cophenetic (Pearson) r = 0.1439 (p = 0.047 with 1,000 permutations),

cophenetic (Kendall rank) τ = 0.1284 (p = 0.077 with 1,000 permutations), and

Baker’s Gamma Index, r = 0.1658 (p = 0.074 with 1,000 permutations). All three

measures show that the hierarchical tree of perceptual distances correlates positively

with the tree of featural distances, at a modest and statistically near-significant level.
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9: h
26: ɾ
11: l
2: ɹ
12: m
13: n
24: tʰ
23: pʰ
6: ð
20: z
21: ʒ
7: dʒ
5: d
22: θ
16: s
1: ʃ
18: tʃ
17: t
15: p
4: b
14: ŋ
25: kʰ
10: k
3: ɡ
19: v
8: f

6: ð
11: l
2: ɹ
9: h

26: ɾ
12: m
13: n
14: ŋ
24: tʰ
20: z
16: s

23: pʰ
25: kʰ
22: θ
7: dʒ
21: ʒ

1: ʃ
18: tʃ
5: d
17: t
15: p
10: k
3: ɡ
4: b

19: v
8: f

Figure 3.21: Hierarchical clustering of featural distances (left) and perceptual dis-
tances (right) with Single linkage: the lines in the middle are drawn to connect the
leaves (the individual phones) between the two trees; the edges of the branches that
are unique to each tree are shown as dotted lines.

Finally, we analyse the trees with single linkage. Focusing on the perceptual tree,

it is immediately clear that it has a very different structure compared to those with

complete and average linkages. Concretely, the larger clusters (from the top of the

tree) have no obvious interpretation, since each split created an imbalanced number

of phones per cluster: e.g. at the first split, one cluster contains only [D], whereas the

other cluster contains the rest of the phones. Going further down the tree, we can
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identify a nasal cluster [m, n, N], a liquid cluster [ô, l] and a large cluster grouped by

manner [f, v, b, g, k, p, t, d], which contains essentially all stops (except for [f, v]).

Visually, the perceptual tree has no direct correspondence with the featural tree.

To better quantify the similarity between the featural tree and the perceptual tree

with single linkage, we applied multiple correlation analyses, which yielded the fol-

lowing correlations: cophenetic (Pearson) r = 0.3046 (p = 0.026 with 1,000 permu-

tations), cophenetic (Kendall rank) τ = 0.2303 (p = 0.048 with 1,000 permutations),

and Baker’s Gamma Index, r = 0.3007 (p = 0.04 with 1,000 permutations). All three

measures show that the hierarchical tree of perceptual distances correlates positively

with the tree of featural distances, at a modest/moderate and statistically significant

level.

All three linkages were able to extract clusters of segments that resemble natural

classes from the perceptual distances. The complete and average linkages were able to

extract natural classes at a higher level of the tree (closer to the root) (e.g. sonorants),

while the single linkage was only able to extract natural classes at a lower level of

the tree (closer to the leaves) (e.g. nasals), and the higher levels of the tree were

hard to interpret in terms of natural classes. However, the single linkage managed

to yield the highest correlation between the tree of perceptual distances and the tree

of featural distances, compared to the complete and average linkages. Therefore, all

three linkages were useful for revealing hierarchical structures in the data.

Interestingly, the hierarchical structures resemble the contrastive hierarchy by

Dresher (2008). In our hierarchical structures, starting from the root, each split can

be seen as a feature being used to contrast the two sets of phones under its leaves.

Therefore, the order of the splits is essentially the order of features being used to

contrast the entire set of phones, such as the contrastive hierarchy. However, it

is worth noting that not every split in our hierarchical structures can be perfectly

interpreted in terms of distinctive features. For instance, a split created two sets of
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phones, [n,m,N,p] and [b,d,g,k,t], and [p] is an outlier in the assumed nasal group. In

fact, the structures projected with the single linkage (Figure 3.21) suffer from this

problem. Therefore, it can be difficult to directly interpret the order of the splits in

terms of the contrastive hierarchy. One potential solution is to compute a score for

how good a given distinctive feature is at distinguishing the two sets of phones at

each split, e.g. a classification score (F-score). Concretely, at each split, there would

be a set of classification scores, one for each distinctive feature; and the distinctive

feature that has the highest classification score is therefore the most representative

distinctive feature for that split. All of the most representative distinctive features

are then ordered by the order of the splits. This could then be interpreted as a

contrastive hierarchy of the perceptual structure.

3.6.4 Conclusion

This section computed the perceptual distances of American English consonants cal-

culated from the confusion data in the naturalistic corpus and subsequently compared

them with featural distances on both global and structrual levels.

Firstly, the global similarity between featural and perceptual distances was anal-

ysed using the Mantel test and there is a modest and significant relationship between

the two (r = 0.2709 and τ = 0.2469, with p < 0.0001 with 10,000 permutations).

Secondly, the structural similarity between the two was analysed using Hierarchical

Clustering. By merging phones from the bottom to the top, using three different

common linkages, different hierarchical structures of the consonants were discovered.

Particularly with complete and average linkages, the structures of the perceptual

distances revealed multiple phonetic dimensions, such as sonorant, spread glottis,

voicing, frication, nasality, liquid, sibilancy and duration; and the two structures

using complete and average linkages were extremely similar (and indeed strongly

correlated, r/τ = 0.4 to 0.6, p = 0), suggesting that it is a stable structure. Further-
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more, the phonetic dimensions identified in the perceptual tree matched those found

in the experimental confusion study by Miller and Nicely (1955), thus highlighting

that phonetic biases that exist in consonant confusions in experimental settings are

robust, and can be found in naturalistic settings. Different correlation measures

(Cophenetic and Baker’s gamma) were applied to compare between the hierarchical

structures based on featural distances and perceptual distances. Overall, the corre-

lations were positive, at a moderate/modest and statistically significant level (r/τ =

0.1 to 0.3).

At both global and structural levels, there are significant similarities between the

featural and perceptual distances. Furthermore, individual examinations of the hier-

archical structures based on perceptual distances reflected clear phonetic dimensions.

However, the strength of the similarity was only at a modest level. This is surprisingly

poor compared to the strong similarity found in the comparisons between acoustic

and perceptual distances in the vowel analyses (Section 3.5.3). Multiple explanations

can be put forth for this poor similarity with the featural distances.

Firstly, the featural distances were computed using primarily articulatory features

which do not reflect perceptual dimensions; therefore, the poor correlation between

articulatory-based featural distances and perceptual distances is expected. In fact,

the question of whether features grounded in one domain – be it articulation, acous-

tics or perception – can capture meaningful structures in another domain is related to

the correlates between features grounded in different domains. The feature relation-

ships between domains have been previously examined, for instance, by Fant (1962),

Delattre (1967), Stevens (1972), Geumann (2001), and Stevens (2002). The overall

conclusion is that correlates of the features across domains are extremely complex

and the relationships are many-to-many, rather than simply one-to-one. These com-

plex many-to-many relationships between correlates of features in different domains

suggest that none of the established feature sets contain features that can only be
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defined in one domain. Concretely, in a comparative study of consonant feature sys-

tem in speech errors (speech misproducton) by Broecke and Goldstein (1980), several

established feature sets were compared. The feature sets compared were defined pri-

marily in articulation terms (e.g. Chomsky and Halle (1968) and Ladefoged (1975)),

and primarily in acoustical terms (e.g. Jakobson, Fant, and Halle (1952)), in terms of

their ability to capture speech error patterns. They attempted to answer the question

of whether domain specific feature sets (in their case, articulatory-based ones) are

better than those of other domains. However, they found that the feature sets based

on different domains are all capable of capturing consonantal structures in speech

errors, and crucially, none of the feature sets examined were superior. Broecke and

Goldstein (1980) concluded that to truly find a preference for a particular domain in

speech errors, one would have to compare feature sets that are grounded purely in one

domain, such as acoustically based ones used by speech synthesisers. This compara-

tive study on speech errors therefore suggests that our choice of established feature

sets should not have an effect on the level of similarity and that even feature sets

that are based primarily on perceptual terms should do equally well/poorly because

they all contain correlates of features between them. Furthermore the ideal feature

set should be purely grounded in one domain (in our case, it should be acoustics or

perception).

Secondly, the poor similarity could suggest that phonetic biases in consonant con-

fusions in perception are relatively small compared to those in vowel confusions. Let

us consider consonant confusions modelled as an equation. Consonant confusions

can be seen as a function of phonetic biases, but they carry relatively less weight

compared to other terms/components in the equation. Furthermore, several specu-

lations can be made. Firstly, this could suggest that there are more components in

the equation of consonant confusions than that of vowel confusions; in other words,

consonant confusions are more complex. Secondly, consonant confusions are more
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susceptible to non-phonetic factors, such as top-down factors (e.g. lexical selections),

than vowel confusions; this speculation is confirmed in Chapter 4, Section 4.2.

3.7 Analysis of ecological validity

This section attempts to address the ecological validity of two experimental condi-

tions that are often manipulated in order to induce perceptual confusions. The first

condition is the signal-to-noise ratio (henceforth SNR), which is the ratio between

the amount of noise and the amount of the signal. The second condition is band-

width filtering. Firstly, I compare the different experimental controls and outline

the experimental misperception corpora of English that were used to address the

two main experimental conditions described in Section 3.7.1. Secondly, I document

the method for assessing the ecological validity of experimental conditions in Section

3.7.2. Thirdly, the analyses of the two conditions are reported in Section 3.7.3 and

Section 3.7.4. Finally, I conclude the findings in Section 3.7.5.

3.7.1 Experimental English corpora

Three experimental corpora of speech misperception errors of American English are

analysed: Miller and Nicely (1955), Wang and Bilger (1973), Cutler et al. (2004),

and Phatak and Allen (2007). These corpora were chosen for their diversity, pri-

marily in the unit of the stimuli. Concretely, the stimuli have different levels of

complexity across these four studies. In Miller and Nicely (1955), the unit stimuli

were in nonsense CV syllables with the same vowel /a/, with the 16 different con-

sonants. Subsequently, Wang and Bilger (1973) presented a similar study with the

full consonant inventory (24 phonemes) of English (c.f. only 16 in Miller and Nicely

(1955)). They embedded the consonants in both CV and VC nonsense syllables, as

opposed to just CV. Furthermore, they used three corner vowels /a/,/i/ and /u/ in
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these syllables; therefore, they covered a wider range of syllables than Miller and

Nicely (1955). Cutler et al. (2004) went one step further by testing all phonologi-

cally permissible CV and VC syllables in English, thus allowing us to examine richer

contextual effects on errors. Finally, Phatak and Allen (2007) tested 64 different

CV syllables (16 consonants and four vowels /A:, I, æ, eI/ with a close-set response

task with 64 possible responses, unlike Cutler et al. (2004) which restricted the ex-

periment to either only consonant confusions or vowel confusions by allowing only

consonant or vowel responses.

Beside the unit of the stimuli, ranging from a nonsense CV syllable with only

one vowel to all possible CV and VC (all vowels and consonants), these studies

are different in a number of ways: a) the kind of noise manipulations (masking

with different signal-to-ratio ratios), b) frequency band filtering with different cut-

off levels and c) noise type. For an overview of the four corpora, please see Table

3.8. A comparison of the different experimental controls used by these studies will

be made in the first section (Section 3.7.1.1). The details of the studies are then

explained in subsequent sections.

Source Unit of
stimuli

Seg.
Error

Syllable
Types Cons:Vowel Noise

Type SNR(dB) Speakers:
Listeners

Miller and Nicely (1955) CV C 16 16:1 White -18 to +12 5:5

Wang and Bilger (1973) CV, VC C 129 24:3 White -10 to +15
Quiet 1:16

Cutler et al. (2004) CV, VC C,V 645 24:15 six-talker
babble 0 to 18 1:16

Phatak and Allen (2007) CV C,V 64 16:4 Speech
shaped

-22 to -2
Quiet 14:32

Table 3.8: An overview of the four experimental corpora for English: the “Source”
column indicates the name of the experimental corpora; the “Syllable Types” column
indicates the syllable type tested by each study; the “Seg. Error” column represents
whether each study tested the confusion of consonants (C) or vowels (V), or both (C,
V); the “Noise Type” column represents the noise type used by each study to mask
their stimuli, each as white noise, six-talker babble noise, and speech-shaped noise;
the “SNR(dB)” column represents the SNR levels of the stimuli and Quiet means no
noise was added; the “Speakers:Listeners” column represents the number of speakers
the stimuli were produced by and the number of listeners tested; and the notation x : y
denotes the number of speakers x and the number of listeners y.
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3.7.1.1 Comparison of experimental controls

This section compares the different experimental controls (as summarised in Ta-

ble 3.8) in the above experimental studies, focusing on the noise type, the fre-

quency bandwidth, the number of speakers and listeners, and the number of syl-

lables/consonants/vowels.

3.7.1.1.1 Noise type Noise in the context of being a masker can be defined as

sounds that are not the voice of the person we are trying to hear. Noise has two

main effects on the speech signal, which are energetic masking (Pollack, 1975) and

informational masking (Pollack, 1975; Watson, Kelly, and Wroton, 1976; Freyman

et al., 1999). Energetic masking is when the noise interferes with the speech signal in

the acoustic environment (Lidestam, Holgersson, and Moradi, 2014). Informational

masking is when noise interferes with the speech signal in the perceptual process

(Lidestam, Holgersson, and Moradi, 2014); and more broadly, it can also be defined

as any masking that cannot be attributed to energetic masking.

The corpora mentioned above used different noise maskers: white noise in Miller

and Nicely (1955) and Wang and Bilger (1973), six-talker babble noise in Cutler

et al. (2004), and speech-shaped noise in Phatak and Allen (2007). The differences

between these noise maskers are discussed below.

White noise is a stationary noise, and it is regarded as an energetic masker. It

masks the entire frequency spectrum of human hearing in equal amounts. However,

human perception of volume is logarithmic (doubling the frequency is perceived as

doubling the volume); therefore, it masks high frequency content more than low

frequency content. In other words, it is particularly effective in masking higher

formants and frication noise.

Multi-talker babble noise masks the speech signal by means of adding competing

speech signals. It is basically the listening condition in the cocktail party problem
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(Cherry, 1953). Babble noise is less effective as an energetic masker than white

noise (Festen and Plomp, 1990; Simpson and Cooke, 2005), but it is an effective

informational masker. The amount of informational masking and energetic masking

of babble noise is a function of how many competing speech signals are added to the

original speech signal (i.e. the number of competing talkers). Informational masking

on the linguistic component is most effective when the number of talkers is two to

three (Carhart, Johnson, and Goodman, 1975; Freyman, Balakrishnan, and Helfer,

2004), and the effect is almost absent when the number of of talkers is higher than

ten (Freyman, Balakrishnan, and Helfer, 2004); while energetic masking increases

with the number of talkers because as the number of talkers increases, the babble

becomes less speech-like and more noise-like.

Speech-shaped noise is when there are infinite competing talkers. It has the

spectrum that approximates the average long term spectrum of speech. Therefore,

similar to multi-talker babble noise, it masks frequency regions that are most speech-

relevant.

In terms of their relative effect on masking the speech signal, speech-shaped noise

tends to mask low frequency regions more than white noise, and white noise tends to

mask high frequency regions more than speech-shaped noise. At a given SNR level,

four to eight talker babble noise tends to mask consonants more than speech-shaped

noise (Simpson and Cooke, 2005). In any case, their relative masking effect depends

on the other experimental controls, such as the stimuli (e.g. if the stimuli contain

mostly fricative consonants, then white noise would lower the overall accuracy more

than speech-shaped noise would).

In terms of ecological validity, white noise is arguably less ecological than multi-

talker babble noise and speech-shaped noise, because the latter two are more speech-

like and resemble real life situations (e.g. in a noisy cocktail party with multiple

people talking at the same time). Crucially, multi-talker babble noise and speech-
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shaped noise mask speech relevant frequency regions as opposed to the entire fre-

quency spectrum. Therefore, one might expect that Cutler et al. (2004) and Phatak

and Allen (2007) are more ecologically valid than Miller and Nicely (1955) and Wang

and Bilger (1973) in terms of the masker.

3.7.1.1.2 Frequency bandwidth Of the four studies, only Miller and Nicely

(1955) examined the effect of bandwidth filtering. By systematically varying the

cut-off upper or lower band, the authors examined the effect of low-pass filtering and

high-pass filtering. Using transinformation analysis (Attneave, 1959; Shepard, 1972),

the amount of information successfully transferred from the signal to the listeners’

system was computed using the confusion matrices. Five phonetic features were

examined: voicing, nasality, (af)frication, duration, and place of articulation. It is

worth noting that the duration feature is to distinguish between [s,S,z,Z] (which are

classified as long) and the other consonants; therefore, it is essentially a sibilancy

feature; and the affrication feature is to distinguish fricatives from non-fricatives. The

differences between low-pass filtering and high-pass filtering are discussed below.

Low-pass filtering filters the high frequency components. The authors found that

it reduces the amount of transferred information more severely for place, followed by

duration (i.e. sibilancy), then affrication (i.e. frication), than other features. That

is, the voicing, and nasality are robust in low-pass filtering.

This relative robustness is apparent by comparing the information transferred

between the widest bandwidth and the narrowest bandwidth. With SNR being fixed

at +12dB, the amount of place information is 1.090 bits with the widest bandwidth

(200–6500 Hz), and the information reduces to 0.025 bits with the narrowest band-

width (200–300 Hz); this is a 98% reduction in information. Similarly, duration

(i.e. sibilancy) has 0.751 bits with the widest bandwidth and 0.042 bits with the

narrowest bandwidth: a 94% reduction. Affrication (i.e. frication) has 0.853 bits

with the widest bandwidth and 0.159 bits with the narrowest bandwidth: a 81%
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reduction. Nasality has 0.555 bits with the widest bandwidth and 0.371 with the

narrowest bandwidth: a 33% reduction. Finally, voicing has 0.956 bits with the

widest bandwidth and 0.623 bits with the narrowest bandwidth: a 34% reduction.

In sum, voicing and nasality are three times more robust than place, affrication and

duration.

This pattern is to be expected, with place, affrication and duration being partic-

ularly vulnerable to low-pass filtering. Low-pass filtering removes the high frequency

components. The affrication and duration features cover all the fricatives, of which

the primary phonetic cues lie in the high frequency regions (Wright, 2004). Similarly,

the main place cues of fricatives lie within the spectrum of the frication noise; one

of the place cues of stops is the release bursts, which consist of short intervals of

frication noise (Wright, 2004). Therefore, the place cues of fricatives and stops are

mostly absent due to low-pass filtering.

Let us move on to high-pass filtering. High-pass filtering filters the low frequency

components. Miller and Nicely (1955) found that it reduces the information trans-

ferred almost equally for all features, with duration being the least reduced. The

robustness of duration (i.e. sibilancy) can be explained by the fact that the sibilants

are characterized by their high frequency energy, and since high-pass filtering only re-

moves low frequency components, the sibilants are largely unaffected. The reason for

why all the other features (i.e. non sibilants) are equally affected by high-pass filter-

ing is that it removes most of the acoustic information of the consonants. Therefore,

the consonants are no longer audible, and the listeners have to guess. Consequently,

the confusion patterns are equally random. Comparing it to low-pass filtering, we

can see that low-pass filtering affects the linguistic features differently, and the re-

moval of high frequency components still leaves the consonants audible because low

frequency components contain most of the acoustic information.

In sum, low-pass filtering particularly masks fricatives, while high-pass filtering
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masks all consonants but the sibilants. Low-pass filtering affects linguistic features

(which generates non-random confusions) differently while high-pass filtering affects

them equally (which generates random confusions). Therefore, low-pass filtering is

a more meaningful manipulation than high-pass filtering, and therefore likely to be

more ecologically valid.

In addition, Miller and Nicely (1955) also observed that the pattern of information

transferred is similar between the manipulation of low-pass filtering and that of SNR

levels. The reason given for this correspondence is that white noise masks high

frequency components of speech more than low frequency components, and this is

effectively what low-pass filtering does; low-pass filtering removes the high frequency

components. This again reinforces the idea that low-pass filtering is a useful and

ecologically valid manipulation.

3.7.1.1.3 The number of speakers and listeners The number of speakers

and listeners was different across the four studies. Miller and Nicely (1955) used

five speakers to produce the stimuli and tested more listeners. Wang and Bilger

(1973) and Cutler et al. (2004) used only one speaker, but three times more listeners

(16 listeners) than Miller and Nicely (1955). Phatak and Allen (2007) tested more

speakers and listeners than the other three studies, with 14 speakers and 32 listeners.

In terms of ecological validity, one could expect that with more speakers and

listeners tested, the confusion results can be better generalised to the population.

With a small number of listeners or speakers, the confusion patterns can be skewed

by individual differences. Recent work has shown that speech perception is a function

of individual differences (Yu et al., 2011; Yu, 2013), such as sex and autistic traits.

Therefore, of the four studies, Phatak and Allen (2007) is expected to be the most

ecologically valid (and therefore reliable) study.
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3.7.1.1.4 The number of syllables/consonants/vowels The number of sylla-

bles/consonant/vowels tested was different for each study. Miller and Nicely (1955)

tested 16 consonants preceding one vowel in a CV syllable; therefore, 16 syllable

types were tested. Wang and Bilger (1973) tested 24 consonants with three vow-

els in both CV and VC syllables, and this amounts to 129 syllable types. Cutler

et al. (2004) was the most comprehensive study in terms of the number of sylla-

bles/consonants/vowels tested; all possible CV and VC syllables (645 syllables) were

tested which covers 24 consonants and 15 vowels. Phatak and Allen (2007) tested

16 consonants preceding four vowels, which accounts to 64 syllable types. Therefore,

Cutler et al. (2004) is expected to be the most ecologically valid study in terms of

the coverage of syllables/consonants/vowels.

3.7.1.2 Miller and Nicely (1955)

Miller and Nicely (1955) examined 16 English consonants: approximately three quar-

ters of the consonants and 40 percent of all phonemes. The 16 consonants are [p], [t],

[k], [f], [T], [s], [S], [b], [d], [g], [v], [D], [z], [Z], [m] and [n]. Five female Americans

acted as both the listeners and the speakers. They reported that the recordings did

not have any noticeable dialect. These consonants were embedded in a nonsense CV

syllable with the /a/ vowel in father, which I assumed to be [A:].

The stimuli were frequency distorted by applying low-pass and high-pass filters

with different cut-off levels and masked with noise at different signal-to-noise ratios.

Concretely, three kinds of stimuli manipulations were employed. Firstly, they masked

the stimuli with white noise with different signal-to-noise ratios of the following

values, -18, -12, -6, +0, +6 and +12 dB, while keeping the full bandwidth 200–6,500

Hz. Secondly, the upper frequency band was manipulated with the values (in Hz)

300, 400, 600, 1,200, 2,500 and 5,000; the lower frequency band was kept at 200

Hz and the signal-to-noise ratio was kept at +12 dB. Thirdly, the lower frequency
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Signal-to-Noise Ratio (dB) Lower band (Hz) Upper band (Hz)

-18 200 6,500
-12 200 6,500
-6 200 6,500
0 200 6,500
+6 200 6,500
+12 200 6,500
+12 200 300
+12 200 400
+12 200 600
+12 200 1,200
+12 200 2,500
+12 200 5,000
+12 1,000 5,000
+12 2,000 5,000
+12 2,500 5,000
+12 3,000 5,000
+12 4,500 5,000

Table 3.9: 17 conditions tested by Miller and Nicely (1955) of different Signal-to-Noise
Ratios (dB), lower bands (Hz) and the upper bands (Hz)

band was manipulated with the values (in Hz) 1,000, 2,000, 2,500, 3,000 and 4,500;

the upper frequency band was kept at 5,000 Hz, and the signal-to-noise ratio was

kept at +12 dB. In total, 17 confusion matrices were extracted from the study (see

Table 3.9 for a summary of the 17 conditions). There were 4,000 observations at

each condition, with each syllable judged 250 times under every condition, making

68,000 trials in total.

3.7.1.3 Wang and Bilger (1973)

Wang and Bilger (1973) examined 24 consonants embedded in a CV syllable, and

19 consonants embedded in a VC syllable. Due to technical constraints on the

number of responses, they created two sets of consonants in a CV syllable, covering

24 consonants with overlapped consonants between the two sets, and two sets in a VC

syllable, covering 19 consonants with overlapped consonants between the two sets
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(see Table 3.10 for a detailed breakdown of phonemes in each of the four syllable

sets.) Unlike Miller and Nicely (1955), this study embedded the consonants with

three vowels [A:],[i:] and [u:] and tested all phonologically permissible CV and VC

syllables, which makes 129 syllables. The stimuli were recorded by one male adult

speaker who was presumably an American. The listeners were six males and ten

females, who were presumably Americans. The task was forced-choice, with 16

possible responses. Three kinds of stimuli manipulations were performed. Firstly,

the signal-to-noise ratio was varied with the following values in dB: -10, -5, 0, +5,

+10 and +15. Secondly, for each signal-to-noise ratio the signal level was varied with

the following values in dB SPL: 50, 65, 80 and 95. Thirdly, the signal level was varied

without masking noise, with the signal levels ranging from 20 to 45 dB SPL in 5-dB

steps, and from 55 to 115 dB SPL in 10-dB steps.

Syllable Set Consonant phonemes

CV-1 [p], [t], [k], [b], [d], [g], [f], [T], [s], [S], [v], [D], [z], [Z], [tS], [dZ]

VC-1 [p], [t], [k], [b], [d], [g], [f], [T], [s], [S], [v], [D], [z], [Z], [tS], [dZ]

CV-2 [p], [t], [tS], [dZ], [l], [ô], [f], [s], [v], [m], [n], [h], [hw], [w], [j]

VC-2 [p], [t], [g], [N], [m], [n], [f], [T], [s], [S], [v], [D], [z], [Z], [tS], [dZ]

Table 3.10: 4 syllable sets tested by Wang and Bilger (1973): CV-1 and VC-1 have
the same set of consonants; CV-2 and VC-2 contains consonants that are not in CV-1
and VC-1.

Syllable Set Signal-to-Noise Ratio (dB) Signal Levels (dB SPL)

CV-1

-10, -5, 0, +5, +10, +15 50, 65, 80, 95VC-1
CV-2
VC-2

CV-1

N/A 20 to 45 dB SPL (in 5-dB steps) and 55 to
115 dB SPL (in 10-dB steps)

VC-1
CV-2
VC-2

Table 3.11: The conditions of the eight confusion matrices published in Wang and
Bilger (1973) of different syllable types, Signal-to-Noise Ratio (dB), and Signal Levels
(dB SPL)

274



The published data were eight confusion matrices. They consist of the four

syllable sets summed over all signal-to-noise ratios and all signal levels, and the four

syllable sets summed over all signal levels without any masking noise. (See Table

3.11 for a summary of the conditions for the eight matrices available).

3.7.1.4 Cutler et al. (2004)

Cutler et al. (2004) tested all possible standard American English CV and VC se-

quences using 24 consonants and 15 vowels (excluding schwa). /N/ and /Z/ were

excluded in the CV syllables. /h/, /w/ and /j/ were excluded in the VC syllables.

Although /Z/ is a possible onset in American English, it was not tested, perhaps

because it is a relatively rare onset. In total, there were 645 syllables. The stimuli

manipulations involved adding multi-talker babble noise with the following signal-

to-noise ratios: 0, 8 and 16 dB. The experiments had two sessions: a consonant

session and a vowel session. In the consonant session, the participants listened to

these nonsense syllables and were then asked to identify only the consonant and not

the vowel. Similarly, in the vowel session, they had to identify only the vowel and

not the consonant. The response type was forced-choice. The participants were 16

native American listeners (and 16 native Dutch listeners, but their data were not

considered in this thesis). Each of them completed both the consonant and vowel

sessions, with 1,935 trials per session, making 3,870 trials per participant, 96 trials

per syllable and 61,920 trials overall. The complete data were published online, with

which various confusion matrices could be computed.

3.7.1.5 Phatak and Allen (2007)

Phatak and Allen (2007) tested 64 CV syllables. The 64 syllables contain 16 conso-

nants [p], [t], [k], [f], [T], [s], [S], [b], [d], [g], [v], [D], [z], [Z], [m] and [n] – the same

set as Miller and Nicely (1955), and four vowels [A:, I, æ, eI].
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The stimuli manipulations involved adding speech-shaped noise with the following

signal-to-noise ratios: -22, -20, -16, -10 and -2dB as well as in Quiet (without any

masking noise). A speech-shaped noise has a long-term average spectrum of speech

signals, and it would mask a speech signal uniformly across frequencies, while white

noise (as used by Miller and Nicely (1955) and Wang and Bilger (1973)) would mask

high frequencies more than low frequencies.

Each CV syllable was spoken by 14 native speakers of American English, and

14 listeners were recruited. All listeners are native speakers of English, in which

ten have American accents, and one has a Nigerian accent. The response type was

forced-choice, with 64 possible syllables as well as a Noise option (if the listener only

heard noise). In total, 5,376 trials (16 consonants × 4 vowels × 14 speakers × 6

SNR levels (including Quiet)) were presented to each participant. The experiment

was split into 42 tests, each with 128 sounds. On average, the experiment took 15

hours to complete by each listener. A subsequent study by Singh and Allen (2012)

recruited additional listeners, and the details are reported in Toscano and Allen

(2014). The data was kindly made available to me by Prof. Jont B. Allen. The final

dataset contained 101,760 completed trials by 32 listeners.

3.7.2 Method

Three experimental English corpora were used as the reference data sets (see Section

3.7.1 for details): Miller and Nicely (1955), Wang and Bilger (1973), and Cutler et al.

(2004). In order to identify the ecological validity of experimental conditions, the

naturalistic confusion matrices are taken as the baseline; that is, they are most eco-

logically valid. They are then systematically compared with experimental confusion

matrices of various experimental conditions. Using correlation tests, experimental

conditions that correlate most with the naturalistic matrices would be the most

ecologically valid.
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3.7.2.1 Pre-processing

A few adjustments were made to the representation of the phones in the experimental

corpora in order to match those in the naturalistic corpus. Firstly, all voiceless stops

[p, t, k] in CV conditions were treated as aspirated voiceless stop [ph, th, kh], but not

in VC conditions. This adjustment was therefore applied to all the [p, t, k] in the

confusion matrices of Miller and Nicely (1955) (since they only tested CV), the two

CV syllable sets in Wang and Bilger (1973), and the CV condition in Cutler et al.

(2004). Secondly, in the vowel confusion data in Cutler et al. (2004), we considered

only the starting point of the diphthongs: [aU] and [aI] as [a], [O] as [O], [oU] as [o]

and [eI] as [e]. Similarly, all long vowels were treated as short [i:] as [i], [A:] as [A],

[O:] as [O] and [u:] as [u]. Finally, the nurse vowel was treated as [3].

3.7.2.2 Extraction of matrices

3.7.2.2.1 Naturalistic confusions Two matrices from the naturalistic corpus

were extracted. They are the same matrices in previous vowel analyses (Section

3.5.2) and consonant analyses (Section 3.6.2).

The full vowel confusion matrix was first extracted, and it contains 16 phones [i,

I, e, E, æ, a, A, 6, O, o, u, 0, 3, 2, U, @]. I then excluded [0] and [6] from the matrix as

they are not part of the General American accent. This confusion matrix (14 by 14)

was then converted into a distance matrix using the procedure described in Section

3.3.1.

The consonant matrix was extracted and it contains 28 phones [p, t, k, b, d, g,

S, Z, tS, dZ, T, D, s, z, f, v, h, m, n, N, ô, l, ph, th, kh, R, j, w]. I then excluded [j] and

[w] for the reason mentioned in the Section 3.6.1. This confusion matrix (26 by 26)

was then converted into a distance matrix using the procedure described in Section

3.3.1.
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3.7.2.2.2 Experimental confusions Different experimental confusion matrices

were extracted for the noise level analyses and the bandwidth analyses.

For the noise level analyses of the consonants, six matrices of Miller and Nicely

(1955) were extracted from the publication; they differ in terms of their SNRs, with

the following values: -18, -12, -6, +0, +6 and +12 dB, all with the full bandwidth

200–6,500 Hz.

Nine matrices were extracted from Cutler et al. (2004) with three syllable condi-

tions (CV, VC, and CV + VC), and three SNR levels (0, +8, +16).

Fourteen matrices were extracted by Wang and Bilger (1973) with seven different

syllable conditions and two noise levels. Since Wang and Bilger (1973) tested two

syllable sets, one was to match phones tested in Miller and Nicely (1955) (CV1,

VC1), and the other was to cover the missing phones from the first syllable set (CV2,

VC2). Out of the seven syllable conditions, four were simply CV1, CV2, VC1 and

VC2, and the other three were generated by merging these syllable sets, which are

CV1 + VC1, CV2 + VC2 and CV1 + CV2 + VC1 + VC2. The reason for merging

CV and VC syllables is to test whether the findings are stable across syllable types

(CV, VC) and a context-free condition (CV + VC).

Finally, six matrices were extracted from Phatak and Allen (2007); they each

have a different SNR level at -22, -20, -16, -10 and -2dB and a Quiet condition.

Given that the unit of response in Phatak and Allen (2007) is at the level of the

syllable, it is possible that some of the consonant confusions occurred with vowel

confusions – that is both the consonant and the vowel were confused in a response.

To better match the consonant confusions with the other three experimental corpora

which allowed only consonant confusions, I extracted only the trials that contain

correctly perceived vowels; that is, in trials that contain an error, only the consonant

was misperceived.

For the noise level analyses of the vowels, nine matrices were extracted from
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Cutler et al. (2004) with three syllable conditions (CV, VC, and CV + VC), and

three SNR levels (0, +8, +16). The vowel confusions from Phatak and Allen (2007)

were not included because they only tested four vowels.

For the bandwidth analyses, two sets of matrices were extracted from Miller and

Nicely (1955). The first set of matrices has the SNR fixed at +12 and the lower

frequency band fixed at 200 Hz, but with a different upper frequency band per

matrix. The upper bands are 300, 400, 600, 1,200, 2,500, 5,000 and 6,500; therefore,

six matrices were extracted. The second set of matrices has the SNR fixed at +12,

and the upper frequency band fixed at 5,000 Hz, but with a different lower frequency

band per matrix; the lower bands are 1,000, 2,000, 2,500, 3,000 and 4,500.

3.7.2.3 Comparative methods

The similarity between confusion matrices was analysed in terms of both global and

structural similarities. The Mantel test (Section 3.3.2.1) was used to evaluate the

global similarity for both consonant and vowel confusions. Hierarchical clustering

techniques were used in Section 3.3.3.1 to evaluate the structural similarity for only

consonant confusions.

With the hierarchical technique, we applied all three common linkages as before

(Complete, Average and Single) with all three correlation measures (cophenetic corre-

lation with Pearson coefficient, cophenetic correlation with Kendall Rank coefficient,

and Baker’s gamma index). Therefore, for the structural comparison, nine corre-

lation values with p-values were obtained for each comparison. With the Mantel

test, both the Pearson and Kendall Rank coefficients were tested; therefore, with

the global comparison, two correlation values with p-values were obtained for each

comparison.

In each comparison, one naturalistic confusion matrix (consonant or vowel) was

compared with one experimental confusion matrix (consonant or vowel). Any phones
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that do not exist in both matrices were excluded. The correlation values are only

considered if the significance level is below a critical α-level, as they provide us

with an indication of the validity of the correlation values. α was selected to be

0.1, which would allow us to include cases where the correlation values are near-

significant. The significant correlation values would then be aggregated by different

experimental conditions in each experimental dataset. Finally, the aggregated data

were visualised with box-plots for evaluation.

In the following sections, I will first present the analyses of the Noise level con-

dition for both consonants and vowels on the global level and for consonants on the

structural level. I then will present the analyses of the bandwidth condition for the

consonants on both global and structural levels.

3.7.3 Noise levels

This section attempts to identify whether specific SNR levels in experimental settings

can generate consonant (and vowel) confusions that are most similar to those in

naturalistic settings. We compare the six SNR levels in Miller and Nicely (1955),

two noise conditions (with and without masking noise) in Wang and Bilger (1973),

and six SNR levels (five with masking noise and one without any noise (i.e. in Quiet))

in Phatak and Allen (2007) for consonant confusions, as well as three SNR levels in

Cutler et al. (2004) for both consonant and vowel confusions. We will analyse each

experimental dataset, starting from Miller and Nicely (1955).

3.7.3.1 Miller and Nicely (1955)

To assess the global similarity, we perform the Mantel test. The significant correlation

values between the consonant confusions in the naturalistic corpus and those in Miller

and Nicely (1955) at different SNR levels are shown in Figure 3.22. The figure shows

that at -18dB and -12dB the correlations are around 0.17 and the lowest correlation
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is 0.1282 at -6dB. From -6dB onwards, there is a steady increase in correlation until

+6dB and a sharp increase from +6dB to +12dB with a correlation of 0.2762. Overall,

the figure shows +12dB correlates most strongly with the naturalistic corpus, and

there is a steady increase in global correlation with an increase in SNR.
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Figure 3.22: Global similarity of consonants between Miller and Nicely (1955) and
the naturalistic corpus at different SNR levels: the points represent the significant
correlation values (Mantel’s correlation), aggregated with boxplots.

Next, we assess the structural similarity with the same set of matrices. The sig-

nificant correlation values between the hierarchical clusters of consonant confusions

in the naturalistic corpus, and those in Miller and Nicely (1955) at different SNR

levels are shown in Figure 3.23. Similar to the pattern on the global level (Figure

3.22), the figure shows a steady increase in structural correlation with an increase in

SNR from -18dB to +12dB. The peak correlation is ≈ 0.45 at +12dB. The steady
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increase has an obvious outlier at -6dB, which has a correlation as high as +6dB.
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Figure 3.23: Structural similarity of consonants between Miller and Nicely (1955)
and the naturalistic corpus at different SNR levels: the points represent the significant
correlation values (cophenetic correlation and Baker’s gamma index), aggregated with
boxplots.

Having analysed the global and structural similarity between consonant confu-

sions in the naturalistic corpus and those in Miller and Nicely (1955) at different

SNR levels, we found that the best correlation is at +12dB and the pattern sug-

gested that the low SNR levels are less ecologically valid – naturalistic confusions

occur at relatively high SNR levels. To reinforce these findings, we will now analyse

Wang and Bilger’s (1973) consonant confusions.
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3.7.3.2 Wang and Bilger (1973)

Unlike Miller and Nicely’s (1955) study, Wang and Bilger (1973) did not provide

the individual confusion matrices at each SNR level. However, there are two noise

conditions that we could test. One of the noise conditions is the pooled data across

all SNR levels, as well as the signal levels being manipulated from 50 to 95dB SPL

in 15dB-steps. The other noise condition is that no masking noise was added to the

signal and only the signal level was manipulated from 20 to 45dB SPL in 5-dB steps

and from 55 to 115dB SPL in 10dB-steps. I labelled these two conditions as Noise

and Quiet respectively.

Similar to the analyses presented in the previous section, we first analyse the

global similarity between Wang and Bilger (1973) and the naturalistic corpus, and

the correlation values of both noise conditions across seven syllable conditions are

shown in Figure 3.24. Six out of seven of the syllable conditions suggest that the

Quiet condition correlates better with the naturalistic corpus than the Noise condi-

tion, with the exception of the syllable condition CV2, which has Noise being more

correlated. While Quiet is more correlated than Noise consistently, it is worth not-

ing that the difference in correlation values is small (the largest difference is merely

0.03).

Let us move on to the analyses of structural similarity between Wang and Bilger

(1973) and the naturalistic corpus. The results are summarised in Figure 3.25. Unlike

the findings with the global similarity, the pattern is less robust. The results of

the syllable conditions CV1, VC1, and CV1 + VC1 suggest that Quiet is better

correlated than Noise. Of these three conditions, VC1 has the largest difference of

almost 0.2 in correlation, and thus the large difference in CV1 + VC1, was driven by

VC1. Focusing on the three conditions related to the second syllable set, CV2, VC2

and CV2 + VC2, there is no visible difference in the CV2 condition, and there is a

slight difference in favour of Noise over Quiet in VC2; therefore, unsurprisingly, CV2

283



●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

CV1 CV2

VC1 VC2

CV1 + VC1 CV2 + VC2

CV1 + CV2 + VC1 + VC2

0.216

0.218

0.220

0.222

0.350

0.375

0.400

0.425

0.260

0.264

0.268

0.272

0.26

0.28

0.30

0.27

0.28

0.29

0.30

0.175

0.200

0.225

0.250

0.275

0.26

0.27

0.28

0.29

0.30

Noise Quiet Noise Quiet

Noise Quiet Noise Quiet

Noise Quiet Noise Quiet

Noise Quiet
Noise Condition

G
lo

ba
l: 

C
or

re
la

tio
n 

V
al

ue

Wang and Bilger (1973)

Figure 3.24: Global similarity of consonants between Wang and Bilger (1973) and
the naturalistic corpus at different SNR levels: the points represent the significant
correlation values (Mantel’s correlation), aggregated with boxplots.

+ VC2 also has a slight difference in favour of Noise. Finally, the merged condition

of all four matrices (CV1 + CV2 + VC1 + VC2) suggests that Noise is better

correlated than Quiet, with a difference of 0.2. To sum up, there is a trend of Quiet

being more correlated than Noise in the first syllable set CV1, VC1 and the CV1

284



+ VC1, but there is a reverse trend, although a weak one, with VC2. Furthermore,

even though the difference is small with VC2, it was able to overcome the reverse

pattern in CV1 and VC1, when all syllable sets (CV1 + CV2 + VC1 + VC2) were

merged.
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Figure 3.25: Structural similarity of consonants between Wang and Bilger (1973)
and the naturalistic corpus at different SNR levels: the points represent the significant
correlation values (cophenetic correlation and Baker’s gamma index), aggregated with
boxplots.
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The small difference between the Quiet and Noise in either direction needs to

be explained. One possible factor is that in both conditions the signal levels were

manipulated. In the Noise condition, the signals were less degraded as the signal

levels were high (50 to 95dB SPL), while in the Quiet condition, the signals were

more degraded (as low as 20dB SPL) and were manipulated with more levels (13

levels). Therefore, the two conditions were not only different in terms of the presence

or absence of masking noise; thus, the differences in correlation were reduced. A

second possible factor is that the Quiet condition might not be as natural as one

would expect. Since in naturalistic settings masking noise definitely exists, the lack

of any masking noise actually makes the condition unnatural, which weakens the

correlation.

Overall, the patterns identified in these analyses with Wang and Bilger (1973)

are in line with the ones found with Miller and Nicely (1955): that is, naturalistic

confusions occur at high SNR levels, when the signals are not severely degraded.

Finally, we will perform similar analyses with Cutler et al.’s (2004) confusions.

3.7.3.3 Cutler et al. (2004)

Just as the analyses above, the global similarity between Cutler et al. (2004) and

the naturalistic corpus was analysed. Figure 3.26 shows the significant correlation

values using the Mantel test at three different SNR levels – 0, +8, and +16dB, and at

three different syllable conditions – CV, VC and CV + VC. Across all three syllable

conditions, the peak correlation is at +8dB which is in the middle of the SNR range,

and the correlations at 0dB and +16dB are of a similar level.

Similarly, the structural similarity was analysed and summarised in Figure 3.27.

Across all syllable conditions, 0dB has the highest correlation, +16dB came second,

and finally +8dB has the lowest correlation. Interestingly, +8dB has the lowest

correlation in terms of structural similarity, whereas it has the highest correlation in
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Figure 3.26: Global similarity of consonants between Cutler et al. (2004) and the nat-
uralistic corpus at different SNR levels: the points represent the significant correlation
values (Mantel’s correlation), aggregated with boxplots.

terms of global similarity. I do not have an immediate explanation for this reversal

in correlation between global and structural similarities.

Overall, the analyses of the global and structural similarity do not correspond

with previous findings with Miller and Nicely (1955). The peak correlation was

found at +8dB in terms of global similarity and 0dB in terms of structural similarity.

Together, this suggests that within the positive range of SNR levels, the lower the

SNR, the higher the correlation. With only three SNR levels, it is unclear whether

this pattern is the result of a random peak or trough in correlation or not.

To clarify the pattern at hand, we perform the same analyses of global similarity

on vowel confusions to see whether we would again find +8dB being the best condi-
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Figure 3.27: Structural similarity of consonants between Cutler et al. (2004) and
the naturalistic corpus at different SNR levels: the points represent the significant
correlation values (cophenetic correlation and Baker’s gamma index), aggregated with
boxplots.

tion. The results are summarised in Figure 3.28. The first observation is that the

correlation at +8dB again varies across syllable type. In CV, +8dB gives the highest

correlation, while in VC it gives the lowest correlation. Together with the previous in-

explicable pattern found with the +8dB condition, it is possible that this condition is

affected by experimental artefacts. Overall, across all three syllable conditions, there

is a trend of an increase in correlation with an increase in SNR, which is consistent

with the patterns found with Miller and Nicely’s (1955) consonant confusions.

Let us considering all the analyses above on Cutler et al. (2004). Consonant con-

fusions appear to favour lower SNR, while vowel confusions appear to favour higher
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Figure 3.28: Global similarity of vowels between Cutler et al. (2004) and the natu-
ralistic corpus at different SNR levels: the points represent the significant correlation
values (Mantel’s correlation), aggregated with boxplots.

SNR. The patterns are highly inconsistent, varying across consonants and vowels,

and across global and structural similarities. This inconsistency could be due to the

ceiling effect, because all the SNR levels tested were positive and the correlation

values were simply fluctuating. Another possible explanation is that the masking

noise was multi-talker babble noise which is considerably different from white noise,

as used in Miller and Nicely (1955) and Wang and Bilger (1973), and that the two

masking noise types are known to mask speech differently (as summarised in Section

3.7.1.1). Multi-talker babble noise masks speech-relevant frequency bands, while

white noise masks high frequencies more than low frequencies in speech. Further-

more, multi-talker babble noise generated from a small number of talkers is a form
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of informational and energetic masking, while white noise is purely energetic mask-

ing. Therefore, we might not expect to find similar correlations between Miller and

Nicely (1955) and Cutler et al. (2004).

So far, our analyses of the data from Miller and Nicely (1955), Wang and Bilger

(1973) and Cutler et al. (2004) have raised three further questions. In Wang and Bil-

ger (1973), we found that Quiet (without masking noise) has a slight advantage over

Noise (with masking noise); however, the two conditions are not perfectly matched

in other aspects, e.g. the signal level manipulations were different. So it remains

unclear as to whether conditions without masking noise really outperform conditions

with masking noise. In Miller and Nicely (1955), we found that the higher the SNR,

the better the correlation; however, the findings from Cutler et al. (2004) suggest

that this is not the case with multi-talker babble noise. Together, they raised two

further questions: a) whether the difference between Cutler et al. (2004) and Miller

and Nicely (1955) is due to the use of different masking noise or not; and b) whether

the fluctuating correlation across the three SNR levels in Cutler et al. (2004) is a

result of ceiling effects or not. In fact, the next study, Phatak and Allen (2007),

might be able to shed some light on these three questions. Firstly, it covers a wide

range of SNR levels (five levels with masking noise), which could address the ques-

tion regarding potential ceiling effects. Secondly, it uses speech-shaped noise, which

is different from white noise and could address the question of whether the use of

different masking noise has an effect on the correlation pattern. Finally, it also has a

Quiet condition, which is matched in other aspects in the conditions that are masked

with noise; this could therefore clarify the findings with Wang and Bilger (1973).

3.7.3.4 Phatak and Allen (2007)

As with the analyses above, the global similarity between Phatak and Allen (2007)

and the naturalistic corpus is analysed. Figure 3.29 shows the significant correlation

290



values using the Mantel test at five different SNR levels: -22, -20, -16, -10 and -2dB

as well as in Quiet. It is clear the Quiet condition has the lowest correlation of all

(r = 0.1356). At the other extreme, -22dB shows similarly low correlation as Quiet.

The correlation value increases as we moved away from the extreme SNR levels, with

an upside-down U-shaped pattern. The correlation is highest (r = 0.3199) at -16dB,

and followed by -10dB (r ≈ 0.29). The highest and the lowest correlations have a

sizeable difference of 0.2 in correlation.
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Figure 3.29: Global similarity of consonants between Phatak and Allen (2007) and
the naturalistic corpus at different SNR levels and in Quiet: the points represent the
significant correlation values (Mantel’s correlation), aggregated with boxplots.

In fact, a similar pattern can be found in the analyses of structural similarity,

as shown in Figure 3.30. Again, we see that the Quiet condition has the lowest

correlation (r ≈ 0.15), and -10dB has the highest correlation (r ≈ 0.41), which was
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the second highest in terms of global similarity. All the other SNR levels are of a

similar correlation value at around 0.32.
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Figure 3.30: Structural similarity of consonants between Phatak and Allen (2007)
and the naturalistic corpus at different SNR levels and in Quiet: the points represent
the significant correlation values (cophenetic correlation and Baker’s gamma index),
aggregated with boxplots.

The findings derived from the data reported by Phatak and Allen (2007) have in-

deed clarified a number of questions we raised earlier. Firstly, a pure Quiet condition

without any experimental manipulation of adding masking noise and of changing the

signal level yielded the worst correlation in both global and structural similarities.

This is likely due to the lack of confusions. Compared to the findings with Wang

and Bilger (1973), the consistent but small advantage of Quiet over Noise is likely

due to the signal level manipulation (which generated confusions), and not the lack
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of masking noise.

Secondly, recall that with consonant confusions in Cutler et al. (2004) the lowest

SNR 0dB has higher correlation than the highest SNR +16dB with the CV syllable

condition (Figure 3.26 and Figure 3.27). We speculated that this is simply the result

of ceiling effects and the difference is due to random fluctuations. This pattern can,

in fact, be explained with what we found with the data from Phatak and Allen (2007),

such that an intermediate SNR level is more correlated than the extreme SNR levels,

and that the high correlation at 0dB and low correlation at +16dB lie on the right

of the upside-down U-shaped pattern. We therefore rejected the speculation of the

ceiling effects.

Finally, recall that with Miller and Nicely (1955), we found that the higher the

SNR, the higher the correlation. However, in the analyses of both Cutler et al. (2004)

and Phatak and Allen (2007), we found that the best correlation is not necessarily

achieved at high SNR. Taking into consideration the low correlation with the Quiet

condition, it is clear that “the higher the SNR, the higher the correlation” is untrue,

because the Quiet has extremely high SNR, and if we were to increase the SNR

beyond +12dB (the highest level in the experiment) in Miller and Nicely (1955),

we should expect to see an increase and a definite decrease when the SNR is too

high to generate a sufficient amount of confusions, therefore revealing the upside-

down U-shaped pattern. Together, this suggests that the use of different masking

noise types has an effect on the resultant correlation pattern, such that the peak

correlation lies at different SNR levels. We found white noise has a peak correlation

at higher SNR (in the positive range) than speech-related noise (speech-shaped noise

and multi-talker babble noise), which have a peak correlation at a lower SNR (in the

negative range).
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3.7.4 Frequency bandwidth

This section attempts to identify whether specific bandwidth manipulation in exper-

imental settings can generate consonant confusions that are most similar to those

in naturalistic settings. Two bandwidth manipulations were examined in Miller and

Nicely (1955). The first manipulation is the adjustment of the upper frequency band:

that is, to apply different low-pass filters. The second manipulation is the adjust-

ment of the lower frequency band: that is, to apply different high-pass filters. First,

we will analyse the low-pass filter condition.

3.7.4.1 Low-pass filter

To assess the global similarity, we perform the Mantel test between the consonant

confusions in the naturalistic corpus and those in Miller and Nicely (1955) at differ-

ent SNR levels with six different low-pass filters: 300, 400, 600, 1,200, 2,500, 5,000

and 6,500 Hz with a fixed high-pass filter at 200 Hz and +12dB SNR. The signifi-

cant correlation values are summarised in Figure 3.31; 200–400 Hz and 200–6,500 Hz

correlate equally well at around 0.275. The other high-pass filters have low correla-

tion values that fluctuate from 0.15 to 0.20. The high correlation at 200–400 Hz is

surprising, considering that it is extremely narrow, and therefore should not reflect

naturalistic settings. For this reason, it is possible that 200–400 Hz is an outlier,

and that there is a trend of an increase in correlation with an increase in bandwidth.

Analyses of the structural similarity could clarify this speculation, and the results

are summarised in Figure 3.32.

The pattern became clearer in terms of structural similarity. Overall, there is

a positive trend as speculated in the global similarity analyses, with the highest

correlation (r ≈ 0.45) at 200–6,500 Hz, and the second highest correlation (r ≈ 0.43)

at 200–5,000 Hz, and the lowest correlation (r ≈ 0.19)at 200–300 Hz. However, the

trend is not a steady one. Among the high-pass filters in between, those at 400, 600
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Figure 3.31: Global similarity of consonants between Miller and Nicely (1955) and the
naturalistic corpus with different low-pass filters: the points represent the significant
correlation values (Mantel’s correlation), aggregated with boxplots.

and 1,200 Hz have higher correlation than 300 Hz and 2,500 Hz. It is possible that

this “peak” in correlation is merely noise in the data, given that 200–400 Hz was also

a potential outlier in the global similarity analyses.

As discussed in Section 3.7.1.1, Miller and Nicely (1955) observed low-pass filter-

ing has a similar effect on misperception as manipulating the SNR levels using white

noise. Therefore, the global and structural correlations between the naturalistic data

and experimental data could be similar between the experimental data manipulated

with low-pass filtering and those manipulated with noise levels. This speculation

is, in fact, confirmed by comparing Figure 3.31 (the global correlations with differ-

ent low-pass filtering) with Figure 3.22 (the global correlations with different noise

levels); and similarly Figure 3.32 (the structural correlations with different low-pass
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Figure 3.32: Structural similarity of consonants between Miller and Nicely (1955) and
the naturalistic corpus with different low-pass filters: the points represent the significant
correlation values (cophenetic correlation and Baker’s gamma index), aggregated with
boxplots.

filtering) with Figure 3.23 (the structural correlations with different noise levels).

These comparisons show that the correlation patterns are similar between the ma-

nipulation of low-pass filtering and that of noise levels, with the highest correlation

at the highest SNR level and the widest bandwidth.

3.7.4.2 High-pass filter

Let us move on to the analyses of the high-pass filter condition. The global similarity

analyses are summarised in Figure 3.33 and the structural similarity analyses are

summarised in Figure 3.34.

In terms of global similarity, the two widest bandwidth conditions (1,000–5,000 Hz

and 200–5,000 Hz) (r ≈ 0.16) have higher correlation values than the two narrowest
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Figure 3.33: Global similarity of consonants between Miller and Nicely (1955) and the
naturalistic corpus with different high-pass filters: the points represent the significant
correlation values (Mantel’s correlation), aggregated with boxplots.

bandwidth conditions (3,000–5,000 Hz and 4,500–5,000 Hz) (r ≈ 0.13), which is

expected from the low-pass filter analyses. However, the two bandwidth conditions

in between (2,500–5,000 Hz and 2,000–5,000 Hz) have the two highest correlation

values (r ≈ 0.18 and 0.20), which is unexpected. In terms of structural similarity,

there is a solid trend showing consistently low correlation values (r from 0.25 to 0.3)

at 3,000–5,000 Hz, 4,500–5,000 Hz, 2,500–5,000 Hz and 2,000–5,000 Hz, and a sharp

increase in correlation at 200–5,000 Hz, which is the widest bandwidth. (N.B. The

1,000–5,000 Hz condition has no significant correlation values to report.)
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Figure 3.34: Structural similarity of consonants between Miller and Nicely (1955) and
the naturalistic corpus with different high-pass filters: the points represent the signifi-
cant correlation values (cophenetic correlation and Baker’s gamma index), aggregated
with boxplots.

3.7.5 Conclusion

Section 3.7.3 attempted to address whether specific SNR levels can generate con-

sonant confusions that are most similar to those in the naturalistic corpus. By

examining four different experimental corpora, we discovered a number of findings.

Firstly, extreme SNR levels (too much noise to no noise (i.e. Quiet)) are least

similar to naturalistic conditions, because at extremely low SNR levels the signals are

too degraded, and the resultant confusions are randomly generated (i.e. by chance),

and at extremely high SNR levels (i.e. Quiet) the signals are not degraded enough

to generate sufficient amount of confusions for any patterns to emerge.

Secondly, three noise-types were used across the experimental corpora: white

noise, multi-talker babble noise and speech-shaped noise. Our finding suggests that
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the SNR level that is most similar to the naturalistic corpus lies in a different range

for different masking noise. With white noise, the “optimal” level (“optimal” is de-

fined as the level with the best correlation with the naturalistic corpus) lies in the

positive SNR range; and with speech-shaped noise it lies in the negative SNR range.

Furthermore, the vowel analyses using the data from Cutler et al. (2004) suggest

that the optimal SNR level lies in a different range between consonant confusions

and vowel confusions. In terms of vowel confusions with multi-speaker babble noise,

the optimal level is likely to be in the positive range. The optimal level is further

dependent on other factors such as syllable type, and perhaps other factors that were

not examined, such as knowledge of the listeners (native versus. non-native), speech

rate, lexicality (some CV and VC syllables could be a word) and many others.

Thirdly, the findings using the data from Wang and Bilger (1973) suggest that

confusions generated by manipulating the signal level without any masking noise have

the potential to generate confusions that are similar to the naturalistic confusions.

In fact, manipulation of the signal level has been used to generate confusions that

are also found in naturalistic corpora. For instance, Cutler and Butterfield (1992)

generated mis-segmentation of word boundaries using faintly heard speech. That is,

speech presented at a low signal level with an error rate of 50% and the resultant mis-

segmentation pattern matched that found in a naturalistic corpus (Bond’s corpus).

Section 3.7.4 examined another experimental condition: bandwidth filtering. Us-

ing Miller and Nicely’s (1955) data, it was found that the wide/full bandwidth pro-

duces confusions that are most similar with naturalistic confusions. Even though

narrowing the bandwidth can generate more confusions, those confusions are not

realistic, and therefore bandwidth manipulation as an experimental condition is not

ecologically valid.

In sum, while it is possible to induce misperception using a number of experi-

mental manipulations, such as masking the signal with noise of different types at
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different SNR levels, bandpass filtering, adjusting signal levels and many others,

some conditions are better correlated with naturalistic misperception. When design-

ing a perception experiment, researchers have to decide what manipulations to apply.

However, in most cases, such decisions are simply arbitrary, picking manipulations

that are not too extreme, or holistic – trying to cover a wide range of conditions.

This is because there is simply no benchmark for whether a given manipulation is

valid or not. If a given hypothesis is not consistently rejected across the manipula-

tions tested, then the researchers will have to somehow justify why this is the case.

Given these problems, I argue that our naturalistic corpus can serve as a benchmark

corpus. Future researchers could compare their confusion matrices generated with

different experimental conditions to the benchmark matrix to determine whether

certain conditions are more ecologically valid than others.

3.8 Analysis of asymmetrical patterns

This section will examine the asymmetrical patterns in consonant and vowel confu-

sions. It is well-known that both historical sound change and perceptual confusions

show asymmetries (Ohala, 1989). Under Ohala’s framework, the listener is a source

of sound change (Ohala, 1981). Perceptual experiments controlled specifically to

test this hypothesis (Plauché, Delogu, and Ohala, 1997; Chang, Plauché, and Ohala,

2001) complement classic perceptual experiments such as Miller and Nicely (1955)

and those mentioned in Section 3.7.1. However, it remains an open question as to

whether asymmetrical patterns found in perceptual experiments can also be found in

naturalistic settings. If sound change is indeed motivated by perceptual confusions,

then it is crucial that these confusions occur beyond laboratory settings, and can be

found in the naturalistic corpus.

Three asymmetrical patterns are selected for analyses: 1) TH-fronting, 2) velar
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nasal fronting, and 3) back vowel fronting. These patterns are selected because

previous work on sound change has considered them in terms of a perceptual-based

account as well as their high confusion rates. In evolutionary phonology, Blevins

(2004, pp. 134–135) considers TH-fronting as a context-free sound change that is

motivated by perceptual asymmetries and the confusion rate between [T] and [f] is

one of the highest consonant pairs in classical confusion studies like Miller and Nicely

(1955). While most accounts of velar nasal fronting has been either articulatory or

historical (Houston, 1985), the confusion rate between [N] and [n] is also relatively

high, being the 6th most confusable pair in the naturalistic corpus (see Table 3.12

for the top ten most confusable pairs). Given the high confusion rate and the fact

that it is a well-known asymmetrical pattern, it is worth examining if a perceptual-

based account can also be made, as in the case of TH-fronting. Finally, back vowel

fronting is a well-established sound change pattern for chain shifts (Labov, 1994a),

and vowel confusions in experiments have been used to motivate this specific sound

change (Benkí, 2003). It is therefore worth re-examining this specific pattern to see

if the asymmetries can also be found in the naturalistic corpus.

Segment Pairs Rank

[S, Z] 1st
[dZ, Z] 2nd
[z, s] 3rd
[n, m] 4th
[dZ, tS] 5th
[n, N] 6th
[tS, S] 7th

[kh, ph] 8th
[t, p] 9th
[p, k] 10th

Table 3.12: The top ten most confusable consonant pairs in naturalistic misperception:
the “Rank” column indicates the rank for the top ten consonant pairs with 1st being
the most confusable.

For each pattern, I will examine the strength and direction of the asymmetries

301



in both the naturalistic corpus and the experimental corpora (Section 3.7.1). This

indirectly reinforces the ecological validity of the experimental studies, and reveals

whether any specific experimental conditions would fail to generate the asymmetrical

patterns.

In the following sections, I will first describe the method for quantifying asym-

metries. After this, I will focus on each of the three asymmetrical patterns. Finally,

I will summarise the findings in the conclusion section.

3.8.1 Method

To quantify the asymmetries from confusion matrices, we employed a bias measure

from signal detection theory, called c (short for criterion) (Macmillan and Creelman,

2004, pp. 27–31).

To calculate c, we first need to extract a 2 by 2 matrix (containing the correct and

incorrect responses for a given pair of phones) from a full matrix. This procedure

relies on the constant ratio rule. According to the constant ratio rule (Clarke, 1957),

response bias is presumed to be independent of the number of stimuli; that is, the

frequency ratios of the responses should be approximately constant in both a full

matrix and a sub-matrix. This rule performs better on multidimensional stimuli than

unidimensional ones (Hodge and Pollack, 1962; Hodge, 1967). Given that phones

are multidimensional, this rule is especially appropriate for our confusion matrices.

However, it has been suggested by Luce that this rule is a strong and uncongenial

assumption (Macmillan and Creelman, 2004, p. 249); therefore, the findings in this

section should be subjected to alternative methods in the future. In any case, we

will accept the constant ratio rule in the present study. Following this rule, we can

therefore extract a subset 2 by 2 matrix from the full matrix in counts (i.e. not

converted into proportions) for a given pair of phones.

The resultant 2 by 2 matrix is illustrated in Figure 3.13. The confusion matrix
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Stimulus \Response x y

x hit miss
y false alarm correct rejection

Table 3.13: An illustration of Hit, Miss, False Alarm and Correction Rejection in a 2
by 2 confusion matrix

contains two dummy segments: x and y. In signal detection theory, we treat the

confusion matrix as a Yes-and-No task: where x is the target stimulus, the response

can either be Yes or No. A Yes response is a successful identification of x, and this is

called a hit. A No response is an incorrect identification of x as y, and this is called

a miss. In the second row of the matrix, when the stimulus y is perceived as x, it is

called a false alarm, which is a false alarm of selecting x, and when the stimulus

y is perceived as y, it is called a correct rejection, which is a correct rejection

of x. The hit and false alarm counts can then be converted into proportions

as hit rate and false alarm rate. hit rate is hits divided by the sum of hits

and misses. false alarm rate is false alarms divided by the sum of false

alarms and correct rejections. Finally, the hit rate and the false alarm

rate are converted into z scores. The z scores of the two rates are then summed and

multiplied by -0.5 to give the bias measure c. In sum, the bias measure c is defined

as:

c = −0.5× (z(HIT rate) + z(FALSE ALARM rate))

A negative c indicates a bias in favour of x, in our dummy matrix (Figure 3.13),

i.e. y is perceived as x more often than x as y. A positive c indicates a bias in favour

of y over x, i.e. x is perceived as y more often than y as x. A zero c indicates there

is no bias in either direction.

The sparse matrix issue (as discussed in Section 3.3.1.5) is also a problem for

methods in signal detection theory. When computing the bias measure c, if either

the false alarm rate or the hit rate were 1 or 0, then we would get infinity during
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the conversion from proportion to z scores. In most cases, the issue is either the

false alarm rate was 0 or the hit rate was 1 (or both). For instance, in our

dummy matrix, if there were no x being perceived as y, then the hit rate would be

1; if there were no y being perceived as x, then the false alarm rate would be 0.

A common correction technique in signal detection theory is to convert any rate

with the value of 0 to 0.5/N , where N is the count sum of the row on which the

zero rate lies. In other words, this is saying we have half a count. Based on this

concept, any rate with a value of 1 is also converted to 1− 0.5/N . In other words, it

is the count sum minus half a count (Macmillan and Kaplan, 1985). This is similar

to the additive smoothing technique (as discussed in Section 3.3.1.5), but without

correcting the count sum from N to N + 0.5.

However, if both the miss rate (1 - hit rate) and the false alarm rate are both

0, then there is simply no confusion in either direction, and the resultant c bias value

is dependent purely on the count sum of each row in the matrix due to smoothing.

I regard these values to be dubious; therefore, if both the miss rate and the false

alarm rate were 0, then I would set the c bias value to 0, assuming no bias in either

direction. A final remark is that c bias values are unit-less like z scores.

3.8.2 TH-fronting

TH-fronting is a well-known sound change in progress in some varieties of English.

The dental fricatives [T, D] are relatively unnatural phones and rare across languages.

Indeed, children when acquiring these sounds would tend to substitute them with

the labial fricatives [f, v] respectively. In some accents, such as New York, the dental

fricatives are replaced by alveolar plosives [t, d] instead (Wells, 1982b, pp. 96–97).

This phenomenon is widespread among a variety of English accents, e.g. New

Zealand English (Wood, 2003), London and Edinburgh English (Schleef and Ram-

sammy, 2013), to name a few. It is sensitive to lexical frequency, phonotactics and
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morphological complexity (Stuart-Smith and Timmins, 2006; Clark and Trousdale,

2009), and it has been suggested that its prevalence is partly due to media exposure

(Stuart-Smith, 2005; Stuart-Smith, 2007).

A perceptual account of the sound change [T] > [f] is more natural than an

articulatory account (Blevins, 2004, pp. 134–135). In terms of the acoustic cues,

one difference between [T] and [f] is that the intensity range is lower in [f] (3,000–

4,000 Hz) than that in [T] (7,000–8,000 Hz) (Yavaş, 2011, p. 111). However, this

frequency cue is, in fact, not the main perceptual cue (Levitt et al., 1988). The

crucial cue is the difference in the formant transition preceding or following the two

phones; however, this difference is small and therefore not robust (Blevins, 2004, pp.

134–135). Furthermore, perception studies with infants showed that while they can

distinguish between all other segmental contrasts, they have difficulties distinguishing

[T] and [f] (Vihman, 1996, p. 60). Indeed, in experimental studies of perception,

such as Miller and Nicely (1955), [T] and [f] has one of the highest confusion rates

because they are perceptually similar. More specifically, in studies such as Miller

and Nicely (1955), [T] is perceived as [f] more often than [f] as [T] (Johnson, 2012,

Ch. 5); this suggests that while the two phones are perceptually similar, there is a

asymmetry. However, it is yet to be confirmed whether this pattern holds water in

naturalistic settings and if this pattern is robust across a wide range of experimental

manipulations of SNR levels, bandpass filters, response types, and syllable types (CV

vs. VC).

To address these questions, in the following sections, I will first conduct a general

analysis, comparing the confusion pattern in the naturalistic corpus with those in

experimental matrices. I then will focus on the experimental matrices, examining

the effects of two experimental conditions – noise levels and frequency bandwidth

(and the syllable types whenever possible) – on the asymmetrical pattern.
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3.8.2.1 Overview

The naturalistic data being examined is the same context-free consonant confusion

matrix. The experimental data being examined are those mentioned in Section 3.7.1.

The matrices extracted are similar to those extracted for the ecological analyses

in Section 3.7.2.2.2, but without all the combined matrices by syllable types. The

experimental matrices are:

• 17 matrices from Miller and Nicely (1955) with different SNR levels and band-

pass filters (all CV).

• Six matrices from Wang and Bilger (1973) with one CV set, two VC sets, and

two noise conditions (Noise and Quiet).

• Six matrices from Cutler et al. (2004) with CV and VC syllable types across

three SNR levels.

• Six matrices from Phatak and Allen (2007) at six SNR levels, but strictly

consonant confusions (the vowels in the CV syllables are correctly perceived).

For the analyses below, I will only address the voiceless pair [T] and [f]. This is

because the sound change with the voiced pair is dependent on its phonological envi-

ronment, being predominantly in medial and final positions (Kerswill, 2003). Since

our experimental studies do not cover any medial consonants, detailed comparisons

cannot be made.

Before looking at any asymmetrical patterns, we could look at the perceptual

similarity of the two phones in question. In the hierarchical clustering analyses in

Section 3.6, we projected the consonant confusion into three clustering trees, each

with a different linkage: complete, average and single. Interestingly, the complete and

average trees (Figure 3.19 and Figure 3.20) revealed that at the finest clustering levels,

[T] and [f] are of the same hierarchical cluster in terms of perceptual similarity. At this
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point, it should be recalled that hierarchical clustering is a structural representation

of the confusion patterns, which often recapitulates natural classes. The consistent

clustering of [T] and [f] suggests that the two phones are perceptually most similar

to each other.

To examine the asymmetries, we calculate the c bias measure from the naturalistic

matrix, and each of the experimental matrices. The corresponding c bias values are

plotted in Figure 3.35 as boxplots, separated by studies in the x-axis, with c bias

values plotted on the y-axis as both individual points and box plots. The first

observation is that both naturalistic and experiment studies have their median c

bias values above zero (as indicated by the black line in the boxplots being above

the dotted line). This shows that there is a robust perceptual bias for [T] being

perceived as [f] more often than the reverse. Its robustness is indicated by how this

bias is consistent across four experimental studies, each of which has very different

experimental conditions (see Table 3.8 for a summary). Furthermore, we analyse all

the c bias values from the experimental studies (N = 35) by applying a one-sample

Wilcoxon signed rank test, testing the hypothesis that the true value is zero. We

found that the c bias values of the experimental studies (the mean value: 0.278) are

significantly different from zero, with p = 7.74 × 10−5 (two-tailed), indicating that

it is a significant positive c bias. Most importantly, this positive c bias also exists

in the naturalistic corpus, therefore indicating the bias (and indeed TH-fronting)

cannot only be found in experimental settings, but also in the “wild”.

The second observation is regarding the variability of the c bias within each of

the experimental studies, as indicated by the size of each box plot. Some studies

have higher variability than others. The study with the highest variability is Miller

and Nicely (1955), followed by Wang and Bilger (1973), then Cutler et al. (2004) and

Phatak and Allen (2007). The variability can possibly be explained by the number

of experimental conditions tested. For instance, Miller and Nicely (1955) tested both
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Figure 3.35: Strength of TH-fronting across naturalistic and experimental studies:
the points represent the c bias values, aggregated with boxplots.

SNR levels and bandpass filters, while the others tested only SNR levels; similarly,

Wang and Bilger (1973) and Cutler et al. (2004) both tested CV and VC syllables,

while Phatak and Allen (2007) tested only CV syllables. Another explanation is the

number of speakers and listeners involved; Phatak and Allen (2007) has the highest

number of speakers (N = 14) and listeners (N = 32), while the others have one to

five speakers and five to 16 listeners. More speakers and listeners used in a study

could iron out any potential individual variations, thus giving a low variability of the

c bias values.

Finally, some of the c bias values are negative, indicating that [f] is perceived

as [T] more often than the reverse pattern in those cases. They are six out of 17 c

bias values from Miller and Nicely (1955) and one out of six values from Wang and
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Bilger (1973). To clarify the variability and these negative c bias values, in the next

two subsections, I will examine whether the c bias values are conditioned by specific

SNR levels, and bandpass filters, or perhaps the variability and negative values are

simply random noise in the data.

3.8.2.2 Noise levels

I will present the c bias value for each experimental data, and highlight and describe

any potential patterns. After presenting all the experimental data, I will take all the

patterns into consideration in a discussion section.

3.8.2.2.1 Miller and Nicely (1955) I will first examine Miller and Nicely

(1955). Figure 3.36 shows the c bias values at different SNR levels at a fixed 200–

6,500 Hz bandwidth. At 200–6,500 Hz, the bias remains positive across all SNR levels

tested (-18dB to 12dB). The weakest bias is at the hardest SNR level, -18dB, with

c = 0.1329. The strong bias is at -6dB, an immediate SNR level, with c = 0.5457.

The plot suggests a tendency of an upside down U-shaped pattern, with extreme

SNR levels (at both ends) having weaker bias; however, there is a discrepancy at

+12dB or at +6dB.

3.8.2.2.2 Wang and Bilger (1973) Moving onto Wang and Bilger (1973), we

compared the Noise and Quiet conditions in one CV matrix, and two VC matrices

(VC1 and VC2). Recall that the two VC syllable sets have some consonants being

different. The c bias values for TH-fronting are shown in Figure 3.37.

Firstly, the Noise condition in VC2 has a negative c bias, while the rest are

positive. However, it is relatively small (compared to the Noise condition in VC1, c

≈ 0.20) with an absolute value of around 0.050; therefore, the negative c bias in any

case is weak at best. In both VC syllable sets (VC1 and VC2), the Quiet condition

also has a weak (though positive) bias which is four times lower than VC1 in the
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Figure 3.36: Strength of TH-fronting in Miller and Nicely (1955) with different SNR
levels: the bars represent the c bias values.

Noise condition. This suggests that the TH-fronting has a weak bias in the Quiet

condition in a VC syllable. Secondly, the biases in CV1 are at least three times

higher than those in VC syllables (compared against the highest value in VC of c

≈ 0.20). This would suggest that the phenomenon is stronger in CV than VC in

general. Thirdly, the values in CV1 and VC1 show that the c bias is stronger in the

Noise condition than the Quiet condition.

3.8.2.2.3 Cutler et al. (2004) The c bias values in Cutler et al. (2004) are

shown in Figure 3.38 for TH-fronting, comparing two syllable types, CV and VC,

across three SNR levels (0, +8, 16dB). All the biases are positive across syllable

types and SNR levels. However, there does not seem to be any obvious pattern with
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Figure 3.37: Strength of TH-fronting in Wang and Bilger (1973) with different noise
conditions: the bars represent the c bias values.

the SNR levels, which could be due to the fact that it is difficult to see a pattern

from only three levels of SNR. The most striking difference is the effect of the syllable

type, with the VC syllable having biases that are two to three times stronger than

those in the CV syllable. This is surprising because this is the opposite of what I

found with Wang and Bilger (1973).

3.8.2.2.4 Phatak and Allen (2007) The c bias values in Phatak and Allen

(2007) are shown in Figure 3.39 for TH-fronting, comparing six SNR levels. The c

bias values are positive at all SNR levels. The c bias value appears to be dependent

on the SNR levels. From the plot, there appears to be two peaks: the highest c bias

value is at the Quiet condition and the second highest is at -20dB. From -22dB, the
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Figure 3.38: Strength of TH-fronting in Cutler et al. (2004) with different SNR levels:
the bars represent the c bias values.

value raises to the smaller peak at -22dB, and then it decreases as SNR increases

until -10dB; after -10dB, the value increases again all the way to Quiet.

3.8.2.2.5 Discussion Using the matrices from Miller and Nicely (1955) and

Phatak and Allen (2007), our finding suggests that the c bias value for TH-fronting

is dependent on the SNR levels, as shown in Figure 3.36 and Figure 3.39. Figure

3.39 suggests at least two maxima of c bias values: one in the negative SNR range

and one in the positive range. This would explain the discrepancy at +6 and +12dB,

such that +6dB was the inflection point and the c bias value increases to +12dB and

possibly higher should Miller and Nicely (1955) have tested higher SNR levels. Fur-

ther investigations are necessary to clarify this apparent pattern with experimental

312



CV

0.0

0.1

0.2

0.3

-22 -20 -16 -10 -2 Quiet
SNR Level

c 
bi

as

Phatak and Allen (2007)
TH-fronting (θ > f)

Figure 3.39: Strength of TH-fronting in Phatak and Allen (2007) with different SNR
levels: the bars represent the c bias values.

studies that tested a broader SNR range.

Recall that the Noise condition has a stronger bias than the Quiet condition with

Wang and Bilger (1973). This does not match with the pattern found with Phatak

and Allen (2007), where the Quiet condition has the strongest bias of all of the SNR

levels. One explanation for this mismatch is that the Quiet condition in Wang and

Bilger (1973) has an additional manipulation, which is the signal levels, and this

manipulation also presented in the Noise condition, but in a different range. Given

such a confound, the difference between Noise and Quiet in Wang and Bilger (1973)

is less reliable than that in Phatak and Allen (2007).

Finally, unrelated to noise levels, we found that in Wang and Bilger (1973), the

bias is stronger in CV syllables than in VC syllables (Figure 3.37). However, the
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pattern was reversed in Cutler et al. (2004) (Figure 3.38). It is not immediately

clear why there is such a mismatch, considering that in many aspects Cutler et al.

(2004) is more complete, and therefore more reliable. Firstly, Cutler et al. (2004)

tested all possible CV and VC syllables (645 syllables with 24 consonants and 15

vowels), while Wang and Bilger (1973) tested only a small subset (129 syllables with

24 consonsants and three vowels). Secondly, Wang and Bilger (1973) restricted the

possible consonant set to 16 phones due to technical limitations at the time. This

means that if the listeners misheard sound A as sound B, but sound B is not one of

the 16 allowable responses, then the listener was forced to choose a different response.

This redistribution of out-of-set responses could have an effect on the asymmetries.

There is independent evidence from varieties of English and across languages that

support TH-fronting being stronger at VC than CV. Firstly, the typological evidence

in varieties of English suggests that, in production, TH-fronting favours word-final

positions over word-initial positions. In some varieties of Scottish English, when /T/

is in a syllable-initial/word-initial position, [T] is favoured over [f], and when /T/ is in

a syllable-final/word-final position, [f] is favoured (Stuart-Smith and Timmins, 2006;

Clark and Trousdale, 2009). Furthermore, in African American Vernacular English,

TH-fronting occurs strictly in medial and word-final positions (Sneller, 2014).

Secondly, the typological evidence from various languages (Turkish, German,

many Slavic languages and others) suggests that marked features for place and man-

ner are likely to be neutralised as the unmarked values in coda positions. Kiparsky

(2008) attributed this coda neutralisation to perceptual saliency (Steriade, 2001),

such that featural distinctions have a lower perceptual salience in coda than in on-

set.

Having analysed the effect of noise levels (and syllable types) on TH-fronting, I

will now analyse the effect of bandpass filters on TH-fronting.
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3.8.2.3 Frequency bandwidth

Figure 3.40 shows the c bias values of TH-fronting with seven different low-pass

filters. The filters are ordered in the plot from low to high (left to right). First of all,

we see that from the left of the plot, the 200–300 Hz and 200–400 Hz bandwidths

have negative c bias values, and as the bandwidth widens from 200–600 Hz upwards

to 200–6,500 Hz, the bias values became positive again. It is clear that at extremely

narrow bandwidths in the low frequency range, the TH-fronting bias is reversed.
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Figure 3.40: Strength of TH-fronting in Miller and Nicely (1955) with different low-
pass filters: the bars represent the c bias values.

Similar observations can be made in Figure 3.40 showing the c bias values with six

different high-pass filters. Three out of six of the filters resulted in a negative c bias,

and they are the three narrowest ranges (3,000–5,000, 4,500–5,000, and 2,500–5,000
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Hz). The next wider bandwidth, 2,000–5,000 Hz, has a weak negative c bias. Finally,

the two widest bandwidths, 1,000–5,000 Hz and 200–5,000 Hz, have a positive c bias.
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0.0

0.2

0.4

3000-5000 4500-5000 2500-5000 2000-5000 1000-5000 200-5000
Bandwidth (Hz)

c 
bi

as

Miller and Nicely (1955)
TH-fronting (θ > f)

Figure 3.41: Strength of TH-fronting in Miller and Nicely (1955) with different high-
pass filters: the bars represent the c bias values.

Overall, the c bias value is dependent on bandwidth manipulation. Specifically at

narrow bandwidths, the direction of the bias is reversed. Given that in the naturalis-

tic matrix and most other experimental matrices the c bias is positive, these negative

c biases generated by narrow bandwidths indicate that bandwidth manipulation is

less ecologically valid than adding masking noise, which resulted in positive c biases

across SNRs in almost all the experimental matrices (apart from the VC2 matrix in

Wang and Bilger (1973)).

Finally, it is worth considering the conditions that diverged from the overall

pattern, and the possible causes for the divergence. The high-pass filtering generated
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negative c bias values at 3,000–5,000, 4,500–5,000, and 2,500–5,000 Hz (see Figure

3.41). Recall that [f] has a lower intensity range (3,000–4,000 Hz) than [T] (7,000–

8,000 Hz). Given that the broadest bandwidth (200 – 6500 Hz) used by Miller and

Nicely (1955) already excluded the intensity range of [T], the fact that listeners prefer

[T] over [f] is puzzling, since the intensity cue for [T] is missing.

One explanation is that listeners rely on the contrast of the absence of low fre-

quency components and the presence of high frequency components. The effect of

high-pass filtering is that only high frequency components can be found in the signal

and no low frequency components can be found. The bandwidths that created the

divergence (3,000–5,000, 4,500–5,000, and 2,500–5,000 Hz) are in the high frequency

range. Together, the presence of high frequency components provides evidence for

[T] that has a high intensity range (regardless of the actual range of [T]), and the

absence of low frequency components provide no evidence for [f] which has a low

intensity range (regardless of the actual range of [f]). Therefore, listeners have a

preference for [T] over [f] in the narrow frequency bandwidths that are in the high

range.

The low-pass filtering has two diverged bandwidths, 200–300 and 200–400 Hz.

Although I have no immediate explanation for their negative c bias values, they

are likely to be negligible, because their values are relatively small (around -0.1)

compared to the other diverged bandwidths (3,000–5,000, 4,500–5,000, and 2,500–

5,000 Hz) which have values that are three times lower (around -0.3).

3.8.3 Velar nasal fronting

Velar nasal fronting is the process of a velar nasal /N/ being realised as an alveolar

nasal [n]. This phenomenon has been extensively studied in sociolinguistics (com-

monly known as the ING variable (Chambers, 2003)). It has been extensively studied

across a variety of English dialects (see Wagner (2008, Ch. 4) for an extensive list

317



of references). Velar nasal fronting is a stable variable. Its application rate has been

posited by Labov (1994a) to follow a hierarchy (verb > adjective > gerund > noun),

with the verb forms (namely, the suffix -ing) showing that highest rate.

Houston (1985) summarised a historical account for velar nasal fronting. The

process is said to reflect a historical morphological alternation between the verbal

noun suffix <ing> and the present participle suffix <inde>. The historical account

comprises two core concepts. The first is a theory of phonetic levelling and the second

is a theory of functional shift (a process of syntactic syncretism). I will review the

theory of phonetic levelling below and leave the theory of functional shift aside.

Within the theory of phonetic levelling, there are multiple explanations. One

of which is that the present participle suffix underwent a stop deletion; therefore,

<inde> [ind] was pronounced as [in], and by assuming that <ing> had the pronunci-

ation [iN], we could say that the stop deletion of [d] triggered the confusion between

<ind> and <ing>, which led the merging of both suffixes as <ing> [iN].

Another final stop deletion account is that both suffixes had a final stop before

the merger, such that <inde> was pronounced as [ind] and <ing> as [ing]. After the

process of final stop deletion, both suffixes had the pronunciation [in], which serves

as a trigger for the merging of both suffixes as <ing>.

Alternative to the final stop deletion accounts, some researchers considered that

<ing> had multiple pronunciations [ng, nk, n, N] and <inde> also had multiple

pronunciations [nd, nt, n]. The confusions between the two suffixes were due to the

overlapping pronunciations, which were likely to involve [n] and [N], because the stop

variants were too distinctive for a confusion to occur.

In addition, an articulatory explanation is that the high vowel in <ing> pulled

the velar nasal [N] forward, thus turning it into an alveolar nasal [n] as a result of

co-articulation. However, this cannot explain why the change was never completed,

as otherwise we should see <in> as the standard orthography variant and [in] as the
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standard pronunciation.

In sum, the theory of phonetic levelling is inconclusive. First of all, the pronunci-

ations of <ind> and <ing> are unclear, given we only had orthographical evidence;

therefore, we cannot be sure if they had final stops [d] and [g]. This casts doubts on

those accounts that rely on the deletion of the stops as the initial confusion trigger.

Furthermore, some researchers have suggested that the change in either direction [N]

> [n], and [n] > [N], or simply not having an explanation for the direction.

As an alternative to the inconclusive historical account of velar nasal fronting,

either as a consequence of independent processes (such as stop deletion) or co-

articulation (fronting of the velar nasal due to the front vowel), velar nasal fronting

could perhaps be explained in terms of final place neutralisation found in diachronic

sound change. Diachronically, final place neutralisation is a common phenomenon.

When nasals are involved, all the nasals [m, n, N] have a tendency to be neutralised

as a velar nasal [N]. To support this, Blevins (2004, pp. 120–122) gives evidence from

Chinese dialects, where some/all of the final nasals [m, n, N] in Middle Chinese are

velar nasals [N] in other sister dialects, such as Fuzhou. Blevins suggests that the

neutralisation is a kind of perceptual-based sound change. Firstly, due to lenition,

the three nasals are often produced as nasal glides. Secondly, listeners have a strong

perceptual bias to perceive nasal glides as velar nasals rather than nasals at other

places of articulation. Together, this led to a perceptual-based sound change – [m,

n, N] > a nasal glide, due to lenition in production; and the nasal glide > [N] due

to their perceptual similarity. However, this perceptual-based sound change cannot

explain the direction of velar nasal fronting, which is from [N] to [n], and not the

reverse.

Perhaps this perceptual-based sound change of [m, n, N] > [N] is not comparable

to velar nasal fronting because it is a diachronic change, while velar nasal fronting is a

synchronic change; therefore, it could be beneficial to examine synchronic evidence of

319



velar nasal fronting in other languages. Velar nasal fronting can be found in varieties

of Mandarin Chinese where [N] is produced as [n], and this is especially common

in Southern China and Taiwan (Yang, 2010). Yang (2010) conducted a production

study, testing the production errors between [N] and [n] in coda positions in Mandarin.

This study also compared two groups of participants: those from Taiwan and those

from mainland China. Their results showed that, firstly, the production errors are

conditioned by the preceding vowel [i, @] and, secondly, there is a group difference

between the Taiwanese participants and Mainland participants. On the one hand,

the participants from Taiwan have above 95% error rate where /N/ is produced as [n]

after [i, @], suggesting that there is a complete merger of /N/ and /n/ as /n/ in coda

positions after [i, @]. On the other hand, the participants from mainland China had ≈

40% error rate in both directions after [i], and the rate is negligible after [@]. The error

patterns from both groups together suggest that velar nasal fronting in Mandarin

Chinese is conditioned by a similar phonological environment as that in English,

because in English it occurs most frequently with <ing> which contains also a front

high vowel; although in English, it is further conditioned by the grammatical class.

This recurrent phonological condition for velar nasal fronting in both English and

Mandarin Chinese lends support to the articulatory explanation mentioned above,

which states the velar nasal [N] is pulled forward into an alveolar nasal [n] by the

high front vowel. Furthermore, in Mandarin Chinese, the confusion between [N] and

[n] in production is asymmetrical from [N] to [n], which matches the velar nasal

fronting phenomenon in English. Although the error rates are approximately equal

in both directions for the mainland participants, I consider this as a sound change

in process (/N/ and /n/ as /n/), and that the errors of /n/ as [N] were the result of

hypercorrection.

In sum, previous accounts of the velar nasal fronting phenomenon in English

considered it a consequence of final stop deletion in the verbal noun suffix <ing> and
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the present participle suffix <inde>, and a result of co-articulation (fronting of the

velar nasal due to the front vowel). The phenomenon is not compatible with accounts

of diachronic sound change of final place neutralisation as they predict the change

being in the opposite direction. Besides English, Mandarin Chinese also has velar

nasal fronting, and the phenomenon shares a similar phonological environment as

that in English. Although the change can move towards completion in some varieties

of Mandarin Chinese (such as those in Taiwan), velar nasal fronting in English was

previously suggested to be a stable process that is unlikely to be completed.

The fact that velar nasal fronting exists in both Mandarin Chinese and English,

and that they share a similar phonological environment, would suggest that velar

nasal fronting could have a phonetic basis and not simply be the result of some

accidental historical change. It is worth noting that I am not proposing a purely

articulatory explanation for velar nasal fronting, as it is morphologically conditioned.

However, it is likely to be one of the factors that promotes this change. In fact,

another factor, segmental frequency, will be examined in Chapter 4, Section 4.2.3.

On top of the articulatory account which was mentioned earlier, I propose that

there is a perceptual bias that contributes to velar nasal fronting. In the following

sections, I will examine both the naturalistic and experimental confusion data to see

whether the perceptual confusion between [N] and [n] is asymmetrical or not, and

whether the direction is the same as that of velar nasal fronting [N] > [n].

3.8.3.1 Overview

The naturalistic data being examined are the same context-free consonant confusion

matrix. The experimental data being examined are some of those studies mentioned

in Section 3.7.1. The experimental matrices are:

• One matrix from Wang and Bilger (1973) with one of the two VC sets (VC2)

and two noise conditions (Noise and Quiet).
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• Three matrices from Cutler et al. (2004) with the VC syllable type across three

SNR levels.

Just as with the analyses of TH-fronting, the c bias measure from the naturalistic

matrix was calculated, and each of the experimental matrices. The corresponding

c bias values were plotted in Figure 3.42 as boxplots, separated by studies on the

x-axis, with c bias values plotted on the y-axis as both individual points and box

plots. The main finding is that the c bias values are positive for the naturalistic

matrix as well as all four experimental matrices. A positive c bias value means that

the perceptual confusion favours [n] over [N]: that is, [N] is perceived as [n] more often

than the reverse.
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Figure 3.42: Strength of velar nasal fronting across naturalistic and experimental
studies: the points represent the c bias values, aggregated with boxplots.
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Without a sufficient amount of data points, all the c bias values from both the

naturalistic and the experimental studies (N = 6) are analysed with a one-sample

Wilcoxon signed rank test, testing the hypothesis that the true value is zero. We

found that the c bias values (the mean value: 0.2649) are significantly different from

zero, with p = 0.03125 (two-tailed), indicating that it is a significant positive c bias.

This supports the view that velar nasal fronting is motivated by a perceptual bias.

The next section will examine the effect of noise levels on the asymmetrical pattern;

however, since there are only two experimental studies, Wang and Bilger (1973) and

Cutler et al. (2004), and neither of them have an extensive coverage of SNR levels,

the findings should be regarded as tentative.

3.8.3.2 Noise levels

Figure 3.42 showed that the median c bias value is relatively small with the two

matrices from Wang and Bilger (1973).

Looking more closely at the breakdown of the c bias values in Figure 3.43, it is

clear that the noise condition has an extremely low c bias value (albeit positive),

and that the Quiet condition has a much higher c bias value. This suggests that the

asymmetrical pattern can be found by manipulating the signal levels, without adding

masking noise to the stimuli, and that the noise manipulation tested by Wang and

Bilger (1973) (-10dB to +15dB with white noise) might be too severe for revealing

this asymmetrical pattern.

Let us move on to the three matrices from Cutler et al. (2004). Figure 3.44 shows

that the c bias value decreases steadily as SNR increases. Furthermore, the lowest c

bias value, which is around 0.25 at +16dB, is already higher than the highest c bias

value of Wang and Bilger (1973). This suggests that the asymmetry is particularly

robust with multi-talker babble as the masker.
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Figure 3.43: Strength of velar nasal fronting in Wang and Bilger (1973) with different
noise conditions: the bars represent the c bias values.

3.8.4 Back vowel fronting

Labov (1994a, p. 116) proposed three principles of vowel chain shifts. The third

principle is that back vowels move to the front. A later version of the principle

was that tense vowels move to the front along peripheral paths and lax vowels move

to the back along non-peripheral paths (Labov, 1994a, p. 200). Each of the two

versions of the third principle makes a different prediction about the direction of

vowel movement. In the following sections, I will examine the first version of the

third principle, which predicts that the back vowels move uniformly to the front of

the vowel space, possibly at the same height.

Labov (1994a, p. 273) used his data on naturally occurring understandings (a
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Figure 3.44: Strength of velar nasal fronting in Cutler et al. (2004) with different
SNR levels: the bars represent the c bias values.

subset of the naturalistic corpus – the Labov corpus) to support the principles posited

for chain shifts. He argued that the confusion data cannot be used to support the

idea that confusions are the causes of sound change, as they could equally be the

result of the change; therefore, the evidence is ambiguous in terms of causality. In

any case, the confusion patterns can nonetheless reflect the patterns predicted by

the principle of sound shifts.

Using an open-set response task, Benkí (2003) collected misperception data of

CVC nonsense syllables, masked with noise at four SNR levels. He conducted a

similar analysis, examining the asymmetrical patterns in vowel confusions. From

the confusion patterns for the following pairs of vowels, [u, i], [e, o] and [A, æ], he

found that the [u] and [o] were perceived as [i] and [e] respectively more often than
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the reverse: that is, there is a fronting pattern; while [æ] was perceived as [A] more

often than the reverse, thus reflecting a backing pattern. The author attributed this

to the second version of Labov’s third principle of chain shifts, which, as mentioned

above, states that tense vowels move to the front, while lax vowels move to the back,

and his data do fit this quite well, given [u] and [o] are back tense vowels and [æ] is

commonly accepted as being a lax vowel.

Following in the footsteps of Benkí (2003), I examined seven pairs of front and

back vowels of the same height. They are [0 > i], [u > i], [U > I], [o > e], [O > E], [A

> æ] and [A > a]. Please note that “>” is used to encode the assumed directionality

for a given pair of segments. If the c bias is positive, then the asymmetry is the same

as the direction of the arrow; if the c bias is negative, then the asymmetry is in the

opposite direction.

However, unlike Benkí (2003), both lax and tense vowels were included, which

added the two lax vowel pairs [O > E] and [U > I]. Furthermore, [A > a] was included,

since [A] and [a] are more closely matched for height than [A] and [æ]. Finally [0 > i]

was included only for the analyses of the naturalistic data and not the experimental

data, because the experimental data did not examine [0].

The naturalistic data being examined are the same context-free consonant confu-

sion matrix. The experimental data being examined are the six matrices from Cutler

et al. (2004) with two syllable types (CV and VC), across three SNR levels.

Let us start with the naturalistic data. Figure 3.45 summarised the c bias values

of the seven pairs on the y-axis, while the x-axis is the vowel pairs ordered by vowel

height (high to low). The figure shows that five of the seven pairs have a positive

c bias, indicating a fronting pattern. Among these five pairs with a positive c bias,

[0 > i] and [U > I] have a relatively strong bias. This pattern fits well with the fact

that the back vowels [0] and [U] are more front than the other back vowels. One

could therefore speculate that the strength of confusion asymmetries of two phones
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is dependent on their acoustic distance. The two tense pairs [u > i] and [o > e] have

a positive c bias, which matches the findings by Benkí (2003). More specifically, the

c bias is stronger with [u > i] than with [o > e] in both the current study and Benkí

(2003). In the current study, the bias with [A > æ] is negative (recall that a negative

c bias for [x > y] means [y] is perceived as [x] more often than the reverse). Although

this pair was also found to be negative in Benkí (2003), the c bias in the current

study is negligible (barely visible in the plot) compared to other pairs. Finally, [A >

a] also has a negative c bias and the strength is also relatively weak. Overall, the

confusion pattern reflects a fronting of back vowels, and this supports Labov’s third

principle of chain shifts.
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Figure 3.45: Strength of vowel fronting in naturalistic corpus: the bars represent the
c bias values.

Let us move on to the experimental data. Figure 3.46 summarised the c bias
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values of the six pairs (the seven pairs mentioned above but excluding [0 > i]).

There are two subfigures, with CV on the left and VC on the right. Each subfigure

shows the c bias values on the y-axis, and the SNR levels on the x-axis. At each

SNR level, the c bias values of the seven vowel pairs are shown as bars ordered by

vowel height (high to low). First of all, some vowel pairs had their c values set to zero

because they contain no confusions in either direction (this treatment was mentioned

in the method section, Section 3.8.1). Let us focus on the pairs with a non-zero bias

value. We can see that the overall pattern diverges from both the naturalistic data

and Benkí (2003).
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Figure 3.46: Strength of vowel fronting in Cutler et al. (2004) with different SNR
levels in CV and VC syllables: the bars represent the c bias values of the seven vowel
pairs (with an assumed direction).

Firstly, [A > æ] has an extremely high positive c bias across syllable types and

SNR levels. Similarly, [A > a] also has a positive c bias across conditions, although
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it is less strong than [A > æ]. The robust positive c bias with [A > æ] and [A > a] is

unexpected, given the findings in the naturalistic data and Benkí (2003). Secondly,

[u > i] and [U > I] are relatively robust among the remaining four pairs, with most

of the non-zero bias values being positive. The bias directions of these two pairs

matched those found previously in naturalistic and experimental settings. Finally,

the lax vowel pair [O > E] has a strong and consistent negative c bias, especially in

CV positions. This is the opposite of what we found in the naturalistic data, and I

have no immediate explanations for such a divergence.

In sum, the naturalistic data showed a strong fronting pattern of back vowels,

and this matches the experimental study by Benkí (2003) using CVC syllables. On

the whole, the experimental data from Cutler et al. (2004) also showed a fronting

pattern but the pattern is less robust.

3.8.5 Conclusion

This section examined three asymmetrical patterns in both the naturalistic and ex-

perimental data. They are TH-fronting, velar nasal fronting and back vowel fronting.

Section 3.8.2 examined TH-fronting. First of all, putting the asymmetry aside,

we saw that [T] and [f] are perceptually most similar to each other, among all the

phones, and this was supported by two out of three of the hierarchical clustering

trees (Figure 3.19 and Figure 3.20) which showed that [T] and [f] are of the same

hierarchical cluster. The clustering of the phones is a structural reflection of the

naturalistic confusion patterns, which often recapitulates natural classes.

Most experimental conditions across three studies showed a statistically signif-

icant positive c bias, indicating that overall TH-fronting is robust experimentally.

The naturalistic bias is consistent with the experimental bias, in that they are both

positive.

However, some of the experimental conditions have a negative c bias, almost all
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of which are the result of extremely narrow bandpass filtering: e.g. six out of 17 c

bias values from Miller and Nicely (1955). Given that in both naturalistic and most

experimental conditions, the TH-fronting bias is positive, this would suggest that

bandpass filtering is less ecologically valid than adding masking noise which resulted

in positive c biases. The findings in Section 3.7 led to the same conclusion regarding

bandpass filtering.

Furthermore, TH-fronting was found to be two to three times stronger in VC

syllables than CV syllables in Cutler et al. (2004). However, we found the reverse

pattern in Wang and Bilger (1973). I argued that the reverse pattern in Wang

and Bilger (1973) is less reliable, given Cutler et al. (2004) is more complete, in

that all possible CV and VC syllables were tested, than Wang and Bilger (1973).

Furthermore, independent evidence from varieties of English and across languages

support TH-fronting being stronger at VC than CV. Varieties of English (e.g. Scot-

tish English and African American Vernacular English) have a restriction on where

TH-fronting can occur, such that word initial positions are often disallowed or not

preferred. Finally, cross-linguistic patterns of coda neutralisation would predict that

featural distinctions are often lost in coda positions rather than in onset positions,

perhaps due to their relative perceptual saliency (Steriade, 2001) with codas being

perceptually less salient.

Finally, comparisons with Miller and Nicely (1955) and Phatak and Allen (2007)

suggest that the c bias value for TH-fronting is dependent on the SNR levels, with

a function that contains two maxima of c bias values. But further comparisons have

to be made with additional studies (such as Phatak, Lovitt, and Allen (2008) and

future studies which examine a wide range of SNR levels) to substantiate this claim.

Section 3.8.3 examined velar nasal fronting. The naturalistic matrix and all the

experimental matrices have a positive velar nasal fronting bias, which is statistically

significantly different from zero (no bias), thus suggesting that it is a robust bias.
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The biases of velar nasal fronting are consistently stronger in Cutler et al. (2004)

than in Wang and Bilger (1973), which suggests that a white noise masker (used by

Wang and Bilger (1973)) might be too severe for revealing the velar nasal fronting

bias. We again found that the c bias value is a function of the SNR levels, with the

c bias value decreasing as the SNR level increases.

Section 3.8.4 examined back vowel fronting. The naturalistic data showed a

strong fronting pattern of back vowels, and this matches the experimental study by

Benkí (2003) using CVC syllables. Interestingly, Benkí (2003) found that [A > æ] has

a negative c bias, and both [A > æ] and [A > æ] were also found to have a negative

c bias in the naturalistic data; however, the strength of the biases were negligible.

The experimental data by Cutler et al. (2004) showed multiple divergences. Firstly,

[A > æ] and [A > æ] both have a consistently strong positive c bias. Secondly, the

lax vowel pair [O > E] has a consistently strong negative c bias, especially in CV

positions.

Overall, the results of all three asymmetrical patterns are encouraging, showing

that these patterns are robust across most experimental conditions (syllable types,

SNR levels and bandpass filters) and, crucially, they are also found in naturalistic

settings. This reinforces the ecological validity of experimentally induced perceptual

confusions as evidence for the framework in which the listener is a source of sound

change (Ohala, 1981; Ohala, 1989). It is worth noting that an alternative account

based on top-down factors for asymmetrical patterns is proposed later in Chapter 4,

Section 4.2.3.

3.9 Conclusion

The focus of this chapter is to examine the bottom-up phonetic and phonological

factors that play a role in naturalistic misperception.
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In Section 3.3, the analytical techniques that are commonly used to analyse confu-

sion matrices were summarised. The section described methods for converting count

data to perceptual distances, as well as techniques for comparing distance matrices

on both global and structural levels. In particular, a methodological contribution was

made on smoothing sparse matrices of misperception, namely the iterative Witten-

Bell smoothing method which has an advantage being entirely data-driven.

In Section 3.4, we identified whether there were any phonetic and phonological

biases in naturalistic misperception on a featural level: place, manner and voicing

for the consonants, height and backness for the vowels. Firstly, we found that an

account that is based on sonority or the availability of acoustic cues can explain

the perceptibility (as indicated by the confusion rate) of the different voicing values

(voiced and voiceless), as well as different manners of articulation (glide, liquid, nasal,

fricative and stop but not affricate), but not the different places of articulation. In

fact, the perceptibility of place is best accounted for with a combination of two

phonological theories: the underspecification of coronal (Lahiri and Reetz, 2002) and

the place markedness scale (Lombardi, 2002). We found that again sonority cannot

explain the perceptibility of vowel height and backness, because their confusions are

asymmetrical. The asymmetrical patterns of vowel height can be explained using

Steriade’s (2001) account of perceived similarity, while the asymmetrical patterns of

vowel backness were analysed in more depth in a later section.

Section 3.5 and Section 3.6 quantified how much of the naturalistic segmental

confusions of the consonants and of the vowels is purely phonetic/phonological. To

do so, the distances between any two segments were compared based on their con-

fusability, with the distances based on acoustic measurements (for the vowels) and

feature values (for the consonants). The distances of both global and structural levels

were compared using correlation tests and visualisations of the projected structures.

The results of the correlation tests and visualisations show that a substantial por-
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tion of the vowel confusions can be explained purely with acoustic distances of the

vowels. Based on the correlation tests alone, there is a low similarity between the

confusion-based distances and phonetic/phonological distances for the consonants,

thereby indicating the processes involved in consonant perception are much more

complex than the vowels. However, when examining the visualisations, the pro-

jected structures of the consonant confusions revealed multiple phonetic dimensions

– such as sonorance, spread glottis, voicing, frication, nasality, liquid, sibilancy and

duration – which suggests that some phonetic biases are involved.

Section 3.7 examined the ecological validity of specific experimental manipula-

tions that are used in experimentally induced misperception studies by comparing

experimental data of previous studies to the naturalistic corpus on both global and

structural levels. In terms of SNR levels, it was found that extreme SNR levels (too

high or too low) tend to be the least similar to naturalistic conditions. This reflects

the fact that at extremely low SNR levels the signals are too degraded to reveal non-

random confusions, while at extremely high SNR levels, the signals are not degraded

enough to induce confusions. More specifically, the correlations with the matrices at

different SNR levels and the naturalistic matrix showed that the relationship between

SNR levels and the similarity level with the naturalistic matrix has a upside-down U-

shaped function. The location of the peak correlation (i.e. the SNR with the highest

correlation) varies from study to study, and it is likely to be dependent on the mask-

ing noise types. In terms of the bandwidth manipulation, it was found that the peak

correlations tend to be the ones with the broadest bandwidth, thus suggesting that

bandwidth manipulation is less ecologically valid than SNR manipulation. Given

that there is a relationship between experimental manipulation (at least with SNR

levels and bandwidth filtering) and the amount of correlation with the naturalistic

matrix, the naturalistic matrix can therefore serve a benchmark corpus, with which

the ecological validity of various experimental manipulations can be evaluated.
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Section 3.8 examined three asymmetrical patterns, which are TH-fronting, velar

nasal fronting and back vowel fronting, in both the naturalistic and experimental

data. Overall, both the naturalistic and the experimental data indicate that percep-

tual confusions contain asymmetries that mirror these asymmetrical patterns. The

strength of these asymmetries is a function of experimental conditions, such as SNR

and bandwidth manipulations. Among the experimental conditions with a negative

bias, almost all were due to narrow bandpass filtering. This again suggests that

bandwidth manipulation is less ecologically valid than SNR manipulation.

With TH-fronting, the bias was found to be stronger in VC syllables and in CV

syllables in Cutler et al. (2004). This is supported by independent evidence from the

restriction of TH-fronting in some English dialects in which word-initial positions (not

medial and final positions) are often disallowed or not preferred. Coda neutralisation

across languages is argued to be motivated by perceptual factors (Steriade, 2001),

such that coda positions are less perceptually salient than onset positions, and this

is reflected in the perceptual bias of TH-fronting.

With velar nasal fronting, the naturalistic matrix and all the experimental ma-

trices have a positive velar nasal fronting bias. It was found that using multi-talker

babble noise as a masker can generate a stronger positive bias than using white noise

and that the strength of the bias with multi-talker babble noise is similar to that

with the naturalistic data. This reflects the fact that multi-talker babble noise is a

much more realistic masker than white noise.

With back vowel fronting, a positive bias was found with most of the vowel pairs

with a front vowel and a back vowel using the naturalistic data. The exceptions were

the low vowels [A, æ] and [A, æ], which have a negligible negative bias. These matched

the experimental study by Benkí (2003) which tested CVC syllables. However, the

experimental data by Cutler et al. (2004) showed that [A, æ] and [A, æ] both have a

consistently strong positive bias across SNR levels and syllable types. Together, the
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three asymmetrical patterns found in misperception support Ohala’s framework of

sound change in which the listeners are a source (Ohala, 1981; Ohala, 1989).

To conclude, the three sets of analyses in this chapter have demonstrated that

naturalistic misperception has a definite phonetic and phonological basis, even at the

lowest level of confusion matrices, both featurally and segmentally on both global

and structrual levels. Concretely, on a featural level, the misperception trends have a

phonetic and phonological explanation. On a segment level, vowel confusions have a

stronger phonetic/phonological bias than consonant confusions. By setting the natu-

ralistic matrix as an ecological benchmark, experimental matrices from four different

studies were compared with the naturalistic matrix on both global and structural lev-

els. The comparisons revealed that the relationship between the listening conditions

and the amount of similarity is not random, and that some listening conditions are

more ecologically valid than others. Finally, our analyses of asymmetrical patterns

confirm that certain sound change patterns are motivated by perceptual asymmetries,

and crucially, these patterns are found in naturalistic settings and are not confined

to specific experimental conditions.
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Chapter 4

Top-down lexical factors

4.1 Introduction

This chapter aims to examine the top-down lexical factors that play a role in naturalis-

tic misperception. Some of the previous analyses of naturalistic misperception using

the sub-corpora of the our combined mega corpus have identified a few top-down

lexical factors such as segmental frequency (Bird, 1998), syllable factors (Browman,

1978) and word frequency (Bond, 1999; Vitevitch, 2002; Tang and Nevins, 2014).

Overall, their findings were encouraging, suggesting that top-down lexical factors

do have an effect on naturalistic misperception, and that they are consistent with

experimental findings. However, given that the data were collected by different peo-

ple, it is possible that their findings are susceptible to certain idiosyncrasies due to

reporting biases. Furthermore, the amount of naturalistic data used by these studies

was small; therefore, it is possible that their findings are due to chance. These draw-

backs highlight the need for a reanalysis of these findings using the combined corpus.

In addition to the three top-down factors, mentioned above (segmental frequency,

syllable factors, and word frequency), the effect of the conditional probability of a

word in an utterance was also examined (which, in information theory, is referred
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to as self-information, Shannon, 1948). This chapter will examine whether there are

top-down effects from linguistic units of various sizes – segments, syllables, words,

and utterances. If so, how strong are these effects? These four factors serve as four

main sections in this chapter. Each of the four sections is introduced below, starting

with segmental frequency.

4.1.1 Segmental frequency

The role of segmental frequencies in segmental confusions will first be examined.

Segmental frequency is the frequency of the occurrence of segments found in a large

sample of the language. I selected two aspects of segmental confusions that could be

explained with segmental frequency.

4.1.1.1 Target and response biases

The first aspect of segmental confusions concerns the target and response biases in

misperception. Target bias means that certain phones are more (or less) likely to be

spoken but misperceived. That is, given there is a misperception, not all segments are

equally likely to be the target. Similarly, response bias means that certain phones

are more (or less) likely to be the resultant perceived phones in a misperception.

That is, given there is a misperception, not all segments are equally likely to be the

response. Can the biases (if any) be explained by the segmental frequency in the

language?

It is important to understand that the target bias means that certain phones are

more likely to surface as the target of a misperception, and it does not mean that

certain phones are more likely to undergo misperception. In other words, target bias

is referring to the probability of a phone being the target segment of a misperception,

and it is not referring to the probability of a phone being erroneously misperceived.

To further clarify what target and response biases are, let us consider the following
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example. 100 phones were presented to a listener and 40 phones were misperceived.

Amongst these 40 phones (the intended segments), what is the distribution of the

intended segments? Can the distribution of the intended segments be predicted by

the distribution of their segmental frequency in the language? These 40 phones were

misperceived as another 40 phones (the perceived segments). What is the distribu-

tion of the perceived segments? Can the distribution of the perceived segments be

predicted by the distribution of their segmental frequency in the language?

To examine this, the frequency of being a target in a misperception will be com-

puted for each segment type. This will then be correlated with the frequency of

each segment type found in the language. A significant correlation would mean that

when a segment is misperceived, the likelihood of this segment being segment x is

dependent on how frequent segment x is in the language. Similarly, for the response

bias, the frequency of being a response in a misperception will be computed for each

segment type, and will then be correlated with the frequency of each segment type

found in the language. A significant correlation would mean that when a segment is

misperceived, the likelihood of the perceived segment being segment x is dependent

on how frequent segment x is in the language.

4.1.1.2 Asymmetrical confusion

The second aspect of segmental confusions concerns their asymmetrical patterns.

In Chapter 3, Section 3.8, three well-known asymmetrical patterns in English were

analysed, namely TH-fronting, velar nasal fronting, and back vowel fronting. The

question is whether asymmetrical patterns such as these ones, and in general, can be

predicted by the relative frequencies of the segments in the language. For instance,

[T] is being perceived as [f] more often than the reverse, but it is also true than [f] is a

more frequent segment than [T]. If the relative frequencies can affect the asymmetrical

confusions, then confusion asymmetries are a function of both perceptual biases and
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frequency biases.

4.1.1.3 Frequency measures

Furthermore, three different measures of segmental frequency will be examined for

the strength of their effect on the three aspects of segmental confusions mentioned

above. The three measures are token frequency (the number of times a given segment

is found in the language), type frequency (the number of words that contain a given

segment) and weighted type frequency (the number of words that contain a given

segment, weighted by the token frequency of the words).

The unweighted type frequency measure is purely lexically-based, while the token

frequency measure is not. The weighted type frequency measure is a hybrid measure,

which is partially lexically-based. If we find that the type frequency measure gen-

erally predicts segmental confusions better than the other two non-lexically-based

measures, then we could argue that listeners are sensitive to lexical items in segmen-

tal misperception.

4.1.2 Syllable factors

Moving away from segments into syllables, we could examine whether certain factors

on the syllable level have a top-down effect on segmental misperception. Three

factors are tested – syllable constituency, syllable position and stress.

Syllable constituency is the position of the segment in a syllable, namely onset,

nucleus and coda. Syllable position is the position of the syllable that contains the

segment in a polysyllabic word. Three positions can be generalised, namely word

initial, word medial, and word final. Stress is whether the syllable is stressed or

unstressed.

Focusing on whether these factors have an effect on whether a segment is more

likely to be misperceived, the following questions could be asked: Do segmental
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errors occur evenly across the three syllable constituents? Do we expect segments in

certain syllable positions to be misperceived more often than others? Are segments in

unstressed syllables more often misperceived than those in stressed syllables? Finally,

do we expect the effect of syllable constituency and stress to be different between

monosyllabic and polysyllabic words?

4.1.3 Word frequency

Let us move on to a larger linguistic unit. The relationship between the frequency of

the intended word and that of the perceived word will be examined. First, is there

a relationship between the frequency of the intended word and that of the perceived

word, Freq.Perceived = f(Freq.Intended)? Second, is the frequency of the perceived

word more frequent than or similar to that of the intended word, Freq.Perceived >

or ≈ Freq.Intended?

This will allow us to find out whether listeners are sensitive to frequency (or

its correlates) on the segmental level as well as the word level in misperception.

Furthermore, it will shed light on the mechanisms/strategies that listeners use when

retrieving lexical items in speech perception.

4.1.4 Self-information

The last top-down factor concerns the amount of self-information a word has and

its effect on whether a word is more likely to be misperceived. By self-information,

we are referring to Shannon information, which is a function of the average unpre-

dictability in a random variable (Shannon, 1948).

Two kinds of self-information were tested. One is based on the unconditional

probability of a word, which is basically the token frequency of a word in a sample of

the language. The other is based on the conditional probability of a word, given its

previous words. The self-information of a word is the negative log of the probability
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of a word; therefore, the more probable a word is, the less self-information it has.

Our question is whether the amount of self-information of a word can be used

to predict how likely it is that it will be misperceived in an utterance. If the condi-

tional self-information is shown to be a good predictor after taking into account the

unconditional self-information, then it would show that listeners are sensitive, not

only to the token frequency of a word, not also to the frequency of a word given its

context.

Furthermore, the direction of the effect of self-information on the likelihood of

word errors can inform us of possible causes of misperception. On the one hand, it is

well-known that high frequency words have a lower processing cost than low frequency

words (Brysbaert and New, 2009; New et al., 2007; Keuleers, Brysbaert, and New,

2010; Ernestus and Cutler, 2014). Therefore one possible cause of misperception

is that words with high self-information (therefore low frequency/less probable) are

more likely to be misperceived because of processing difficulties. On the other hand,

words with low self-information (therefore high frequency/more probable) are prone

to phonetic reduction (Wright, 1979; Aylett and Turk, 2004; Bybee, 1995; Bybee

and Hopper, 2001; Bybee, 2001; Coetzee and Kawahara, 2013). Therefore, words

with low self-information are more likely to be misperceived because of the amount

of phonetic information. Since the two explanations make different predictions, our

analyses can reveal which of the two is more plausible.

4.1.5 Summary

This chapter is broken down into five sections. The first four sections contain the

analyses of the four top-down factors described previously. First, Section 4.2 will

examine the effect of segmental frequency on two different aspects of segmental

confusions. Second, Section 4.3 will evaluate the effect of three syllable factors on

the likelihood of a segment error. Third, Section 4.4 will examine the frequency
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relationship between the intended and perceived words. Fourth, Section 4.5 will

evaluate the effect of self-information on the likelihood of a word error in an utterance.

Finally, Section 4.6 will conclude the findings and contributions made in this chapter.

4.2 Segmental frequency

This section examines the role of segmental frequencies in segmental confusions. Seg-

mental frequency is the frequency of the occurrence of segments observed in a rep-

resentative sample of the language. We will focus on two aspects of segmental con-

fusions that could be the result of the segmental frequencies in the language. In

addition, three different frequency measures will be tested.

The first and the simplest measure is token frequency, which is the number of

occurrences of a given phone (Kučera and Francis, 1967; Nusbaum, Pisoni, and Davis,

1984). The second measure is type frequency, which is the number of lexical items

containing a given phone (Kučera and Francis, 1967; Nusbaum, Pisoni, and Davis,

1984). The third measure is like the second measure but weighted by the token

frequency of each of the lexical items containing a given phone (Nusbaum, Pisoni,

and Davis, 1984). They are summarised below.

• Token: The number of occurrences of a given phone

• Type: The number of lexical items containing a given phone

• Type (Weighted): The sum of the log-transformed frequencies of the lexical

items containing a given phone

The role of frequency has played a central role in linguistics. Perhaps the most

prominent research in linguistics using frequency was done by Bybee on its role

in morpho-phonology and historical analogical changes (Bybee, 1995; Bybee and

Hopper, 2001; Bybee, 2001). Generally speaking, token frequency refers to the
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number of occurrences of a unit in the language, while type frequency refers to the

number of occurrences of a specific pattern. To introduce these concepts more clearly,

it is worth using examples from morphology. In morphology, the unit of token and

type frequencies is a word. Token frequency is the frequency of a word form, e.g.

broke. Say broke occurred 60 times in a corpus of one million words. Type frequency

is the frequency of occurrences of a specific pattern. Say that there are three word

forms that have the irregular past tense pattern – broke, spoke and wrote; the type

frequency would then be three. However, it is possible that amongst the word forms

of the irregular past tense, their token frequencies differ hugely and therefore each

contributes a different amount of weight. Rather than saying that each of the three

word forms contributes equally, we would weigh each of them by their respective

token frequencies. The type frequency of the irregular past tense is therefore the

sum of the log-transformed token frequency of the three word forms. This measure

is the weighted type frequency.

Let us return to the level of segments. While there is no doubt that these three

measures are highly correlated, they do make different predictions about the nature

of segmental frequencies in perceptual confusions. If the two type frequency measures

were able to capture more variance than the token frequency measure in perceptual

confusions, then one could argue that the listeners are sensitive to lexical information

(i.e., the segmental frequencies are computed from the words the listeners know, not

from a large sample of segments.). Amongst the two type frequency measures, the

literature has conflicted views of whether a weighted measure can better reflect our

linguistic knowledge. When calculating neighbourhood density, Bailey and Hahn

(2001) proposed a metric that weighs the lexical neighbours of a target word by

their respective token frequency. That is, some neighbours contribute more than

others. They demonstrated that a weighted measure can capture more variance

in behavioural data (non-word acceptability ratings). A later study by Albright
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(2007) replicated the analyses in Bailey and Hahn (2001), but the author could

not find a significant improvement in the amount of variance explained. In fact, a

number of previous studies claimed that pattern strength in the lexicon is determined

by type and not token frequency (Bybee, 1995; Albright and Hayes, 2003; Hay,

Pierrehumbert, and Beckman, 2004). In sum, the two type frequency measures are

expected to outperform the token frequency measure. Furthermore, the weighted

type frequency measure is expected to perform worse than the unweighted type

frequency measure. If it were to outperform the unweighted measure, the difference

should be negligible.

Having described the three frequency measures and their respective predicted

performance, we will now briefly describe the two aspects of segmental confusions

that are being examined for the existence of any segmental frequency bias. A more

detailed description of each of the two aspects can be found in their respective

introduction sections.

The first aspect concerns whether frequency can capture the target and response

biases. Are certain phones more (or less) likely to be spoken but misperceived (the

target)? Are certain phones more (or less) likely to be involved in the resultant

perceived phones (the response) in a misperception? If so, whether these patterns

can be captured by frequency. In other words, does the frequency distribution of

the phones in the language have a similar frequency distribution of the phones being

the target and the response of a misperception? From the perspective of a listener,

given a segment will be misperceived by the listener, this segment is more likely to

be a segment that is frequently spoken in the language, than a segment that is less

frequently spoken. Similarly, the responses that the listener gives as the perceived

segments (though incorrectly) are biased by the frequency of the segments in the

language; that is, the listener would perceive a specific segment more often because

this segment is frequent in the language.
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The second aspect concerns the asymmetrical confusions. Perceptual confusions

are often asymmetrical, i.e. a segment x is perceived as a segment y more often than

reverse. We test whether the direction and strength of the asymmetrical confusions

across all pairs of segments can be explained by the relative frequency of the two

segments in the language. Say that there is an asymmetry between [f] and [T] in

the direction of [T] > [f]. It is possible that this is due to the fact that [f] is more

frequent than [T] in the language; therefore, listeners are biased to perceive [T] as [f]

more often than the reverse.

In sum, Section 4.2.1 outlines the data that are examined. Section 4.2.2 examines

whether frequency can capture the target and response biases. Section 4.2.3 examines

whether the strength and direction of the asymmetrical confusions can be predicted

by the relative segmental frequencies. Each of the latter two sections contains its

own introduction, method, analysis and conclusion sections. Finally, Section 4.2.4

concludes the findings of these two sets of the analyses.

4.2.1 Data extraction

The naturalistic data used in this section are the context-free segmental confusions,

as described in Chapter 3, Section 3.2.

Given the three frequency measures, three sets (token, type and weighted type)

of actual segmental frequencies were extracted from a control written English corpus

as described in Chapter 2, Section 2.3. First, a frequency list was compiled from

the corpus. Second, in order to remove words that were erroneously introduced into

the corpus due to typos, words that occurred in fewer than three pieces of subtitle

texts (i.e. three episodes/films) were removed.1 Finally, given that we transcribed

tapping across word boundaries, words ending in /t/ or /d/ followed by a vowel could

have more than one pronunciation (e.g. it has two pronunciations: [It] and [IR]). The
1I thank Dr. Emmanuel Keuleers for suggesting this filter.
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type frequency measure was computed over the dominant pronunciation, whereas the

weighted type frequency measure was computed over the dominant pronunciation but

weighted with the combined token frequency of all the pronunciations. The token

frequency measure was computed over all the pronunciations and their corresponding

token frequencies.

26 consonants were considered – [p, t, k, b, d, g, S, Z, tS, dZ, T, D, s, z, f, v, h,

m, n, N, ô, l, ph, th, kh, R]. The reason for excluding the glides [j, w] is because in

the corpus transcription, they are used as both consonants in onset positions and as

offglides of the vowels; therefore, to avoid ambiguity, they were excluded from the

consonant set.

14 vowels were considered – [i, I, e, E, æ, a, A, O, o, u, 3, 2, U, @], excluding

[0] and [6]. The reason for excluding these two vowels is to focus on the General

American accent, since the written corpus from which I extract the frequency norms

was transcribed with a General American accent, so the frequency norms cannot be

found for these two vowels.

4.2.2 Target and response biases

The first aspect of segmental confusions concerns the target and response biases in

misperception. Concretely, the questions are whether certain phones are more (or

less) likely to be spoken but misperceived (the target), or involved in the resultant

perceived phones (the response) in a misperception, and if so, whether this pattern

can be captured by frequency. Say that [t] is the most frequently spoken but mis-

perceived segment (i.e. this segment is an intended segment, but it was perceived as

something else). Similarly, say that [t] is the most frequently perceived segment for

a misperceived intended segment (i.e. a given segment was misperceived as this seg-

ment). An obvious explanation would be their high frequencies are simply because

[t] is one of the most frequent segments in the language.
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It is important to understand that the target bias means that certain phones are

more likely to surface as the target of a misperception, and it does not mean that

certain phones are more likely to undergo misperception. To avoid ambiguity, in

this section, we will refer to the segmental frequencies in the language as the Actual

(segmental) frequencies, the frequencies of an intended segment in a segmental mis-

perception as the Target (segmental) frequencies, and the frequencies of a perceived

segment in a segmental misperception as the Response (segmental) frequencies.

If the actual frequencies correlate with the target frequencies, then it would sug-

gest (given that there is a perceptual error) that the probability of a certain phone

being the intended segment of this error is a function of the probability of this phone

in the language. In other words, the more frequently an intended segment is pro-

duced, the more likely it will be the target of a misperception. This is to say, there

is a target bias due to frequency.

Similarly if actual frequencies correlate with response frequencies, then it would

suggest that the probability of a given segment being chosen (incorrectly) as the

perceived segment is determined by how frequent the perceived segment is in the

language. Given an intended segment will be misperceived, the listener will choose

a segment as the response based on how frequent it is. This is to say, there is a

response bias due to frequency.

In addition to the question of whether there is a target bias and a response bias

due to actual frequency, the next question is how much of the variance of these

biases can be captured with frequency. The findings from this is crucial, because the

variance that cannot be explained by frequency is therefore potentially captured with

other non-frequency factors. In terms of the target bias, one non-frequency account

is a phonetic account which predicts that a phone that is phonetically less robust (the

amount/strength of the phonetic cues) is more likely to be a target of misperception.

In terms of the response bias, a non-frequency account is also a phonetic account
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which predicts that the choice of the (incorrectly) perceived segment is dependent on

its perceived similarity to the intended segment. In sum, this analysis can indirectly

highlight the strength of non-frequency factors that are involved in the target and

response biases, and the most obvious factor is the phonetic properties of the phones

in terms of robustness and their mutual perceived similarity.

These questions were previously examined for naturalistic misperception by Bird

(1998) (using 300 instances of naturalistic misperception, which is a sub-corpus of

our mega corpus).

Focusing on substitutions, Bird (1998) conducted a correlation analysis separately

for consonants and vowels. The author correlated the actual frequencies with the

target frequencies, and with the response frequencies. While all the correlations were

statistically significant, the correlation values with the vowels were higher (R = 0.89

– 0.93) than those with the consonants (R = 0.80 – 0.84). These high and significant

correlations suggest that an extremely high proportion of the variance is explained

by the actual frequencies alone. The fact that the correlations were not perfect (i.e.

R was not 1) suggests other factors are at work (though playing a very minor role),

causing certain phones to be involved in misperceptions more often or less often that

the actual frequencies would predict.

Bird’s (1998) frequency analyses opened up a range of questions. Firstly, given

Bird’s (1998) data were based on 300 instances, which is a relatively small sample

compared to our mega corpus (around 5,000 instances), can the correlation results

be replicated? Secondly, the author focused on substitution. Can we expect to find

similar correlations with insertion and deletion?

To conclude, a number of questions can be raised regarding this aspect of seg-

mental confusions. The key question is whether there is a frequency bias for a phone

being the target segment and the response segment of a misperception. The second

question is, given there is a bias, how strong is this bias? How much of the vari-

348



ance can be explained with the segmental frequencies alone? The third question is

which of three frequency measures (token, type and weighted type) can capture the

most variance. The fourth question is whether the findings of the previous questions

would differ between consonants and vowels, and between substitutions, insertions

and deletions.

4.2.2.1 Method

Given we are interested only in the segments involved in misperceptions, the correctly

perceived segments were ignored. That is, the diagonal cells of the confusion matrix

were ignored.

A non-parametric correlation, Spearman, was used to compare the two sets of

frequencies, since the frequency values are not normally distributed.

4.2.2.2 Analyses

4.2.2.2.1 Consonants The correlation results of the consonants are summarised

in Table 4.1. The table contains the correlation values with the level of statistical sig-

nificance indicated by the number of asterisks. The table categorises the correlation

values by the target frequency (substitution and deletion) and response frequency

(substitution and insertion) across the table horizontally, as well as by the three fre-

quency measures vertically. The correlation value in bold in each column is the best

correlation amongst the three frequency measures.

From the table, we see that all the correlation values are statistically significant

and at a strong to very strong level. The lowest value is 0.7820, and the highest value

is 0.9670. This clearly indicates that the actual segmental frequency is a strong factor

for the target bias and response bias of misperception for consonants.

For both target and response frequencies (substitution, insertion and deletion),

type frequency yielded better correlation than the weighted type frequency. This was
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Target Response

Frequency Measure Substitution Deletion Substitution Insertion

Token 0.8417∗∗∗ 0.9393∗∗∗ 0.8273∗∗∗ 0.9670∗∗∗

Type 0.9183∗∗∗ 0.7824∗∗∗ 0.9008∗∗∗ 0.7936∗∗∗
Type (Weighted) 0.9042∗∗∗ 0.7820∗∗∗ 0.8943∗∗∗ 0.7841∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.1: Segmental frequency correlations (Spearman, two-tailed) of consonants
between target and response frequencies with actual frequencies of three frequency
measures: the superscript symbols denote the level of statistical significance; the bold
value in each column is the best correlation amongst the three frequency measures.

expected, since the weighted type frequency is weighted with the token frequency

of the relevant lexical items, and previous studies claimed that pattern strength in

the lexicon is determined by type frequency and not token frequency (Bybee, 1995;

Albright and Hayes, 2003; Hay, Pierrehumbert, and Beckman, 2004). However, it

is not always the case that both the type frequency measures (weighted and un-

weighted) yield better correlations than the token frequency measure. This is only

the case for substitution (target and response), while for insertion (response) and

deletion (target) token frequency outperforms both measures of type frequency. One

possible explanation is that for substitution two lexical items must be involved in

the misperception, while for insertion and deletion it is possible (but not necessary)

that only one lexical item is involved (i.e. a whole word insertion and a whole word

deletion). In this way, insertion and deletion are less sensitive to lexical informa-

tion than substitution, and yield poorer correlations with the two type frequency

measures which are lexically based.

All the correlations are visualised as scatterplots fitted with a linear regression

line with confidence intervals. They are Figures 4.1, 4.2, 4.3 and 4.4. Overall, the

relative strength of the correlation values is well reflected in the plots, particularly

with insertion and deletion.

Although the correlation values are strong, they are not perfect, just as Bird’s

350



ʃ

ɹ
ɡ ɾ

b

d

ð
dʒ

f

h

k
kʰ

l
m

n

ŋ

p
pʰ

s
t

tʃ

tʰv z

ʒ

θ ʃ

ɹ
ɡ ɾ

b

d

ð
dʒ

f

h

k
kʰ

l
m

n

ŋ

p
pʰ

s
t

tʃ

tvh
z

ʒ

θ ʃ

ɹ
ɡ ɾ

b

d

ð
dʒ

f

h

k
kʰ

l
m

n

ŋ

p
pʰ

s
t

tʃ

tvh
z

ʒ

θ

Token Type Type (Weighted)

1.0

1.5

2.0

2.5

5.5 6.0 6.5 7.0 7.5 3.0 3.5 4.0 4.5 5.03.0 3.5 4.0 4.5 5.0
Actual Frequency

 (Log10-transformed)

Ta
rg

et
 F

re
qu

en
cy

 o
f S

ub
st

itu
tio

n
 (L

og
10

-tr
an

sf
or

m
ed

)

Figure 4.1: The relationship between the target frequencies of substitution and three
measures of actual segmental frequencies: consonants
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Figure 4.2: The relationship between the target frequencies of deletion and three
measures of actual segmental frequencies: consonants

(1998) findings. A closer look at the segments that cannot be explained by the best

actual frequency measure (the measure that yields the highest correlation value)

could potentially reveal any non-frequency factors. The segments that fall outside

the confidence intervals of the linear regression lines (in Figures 4.1, 4.2, 4.3 and 4.4)

are summarised in Table 4.2.

First of all, it is worth noting that the diverged segments in the target and

response biases of substitution can be analysed together. Similarly, the diverged seg-

ments in the target bias of deletion and the response bias of insertion can be analysed
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Figure 4.3: The relationship between the response frequencies of substitution and
three measures of actual segmental frequencies: consonants
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Figure 4.4: The relationship between the response frequencies of insertion and three
measures of actual segmental frequencies: consonants

Target Response

Substitution Deletion Substitution Insertion

More often [t, d, n, m, D] [t, d, Z, l, N] [t, d, n, m, D, p, b, f] [t, d, Z, l, ô, N]
Less often [z, dZ, tS, S, Z, ô, N] [tS, S, m] [z, dZ, tS, S, Z, ô, l, N] [dZ, tS, S]

Table 4.2: Consonant segments diverged from actual frequency: the row “More often”
denotes the segments that are the target/response of a misperception more often than
expected by the best actual frequency measure; the row “Less often” denotes the seg-
ments that are the target/response of a misperception less often than expected by the
best actual frequency measure.

together. This is because the response patterns can be the result of hypercorrection

(Ohala and Shriberg, 1990).
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In Table 4.2, the row “More often” contains segments that are the target/response

of a misperception more often than expected by the best actual frequency measure

(i.e. these segments are above the linear regression). The row “Less often” contains

segments that are the target/response of a misperception less often than expected

by the best actual frequency measure.

The types of diverged segments are examined in the following order.

1. The segments that are the target and response of a substitution more often

than expected

2. The segments that the target of a deletion and the response bias of an insertion

more often than expected

3. The segments that are the target and response of a substitution less often than

expected.

4. The segments that the target of a deletion and the response bias of an insertion

less often than expected

Let us start with the consonant segments that are the target/response of a sub-

stitution more often than expected. The diverged target segments are [t, d, n, m,

D], and the diverged response segments are [t, d, n, m, D, p, b, f]. First, [t, d] can

be explained by the fact that they are perceptually weak segments (stops are the

least sonorous manner) and often undergo lenition intervocalically (Kirchner, 2001).

A closer look at the raw confusion matrix in Figure 3.7 in Chapter 3 reveals that [t]

and [d] are most confusable with each other, with [t] being perceived as [d] 1.85%

of the time, and [d] being perceived as [t] 2.9% of the time. This suggests that the

[t] and [d] are diverged from the expected actual frequency due to voicing confusion.

Voicing confusion can be viewed as the result of lenition and the hypercorrection of

lenition, if the voicing confusions occur intervocalically (further analyses are needed

to examine the environment of these voicing confusions).
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Second, [n] can be explained by the fact that it occurs more often in unstressed

environments, e.g. in the word “and” and in prefixes such as “un” and “in”. Un-

stressed environments should be more susceptible to misperception than stressed en-

vironments because stressed environments are perceptually more prominent (longer

duration, higher intensity). Furthermore, “and”, “un” and “in” are highly frequent in

the lexicon and they therefore are more likely to have a shorter duration and undergo

processes of phonetic reduction (Wright, 1979). Regarding the divergence of [m], a

closer look at the raw confusion matrix in Figure 3.7 in Chapter 3 reveals [n] and

[m] are most confusable with each other, with [n] being perceived as [m] 2.96% of

the time, and [m] being perceived as [n] 5.7% of the time. Given the high confusion

between [n] and [m], the divergence of [m] can also be explained. This divergence of

[n, m] was also found by Bird (1998).

Third, [D] can be explained by the fact that it is mainly found in high frequency

function words such as “the”, “that”, ”this” “their” etc. Since, high frequency words

tend to be phonetically weakened (Wright, 1979), [D] is misperceived more often than

expected by its actual frequency.

Finally, [p, b, f] are the response of a misperception more often than expected by

their actual frequencies, for which I have no immediate explanation.

Let us move on to with the consonant segments that are the target of deletion and

the response of insertion more often than expected. The diverged target segments

are [t, d, Z, l, N], and the diverged response segments are [t, d, Z, l, ô, N]. First, [t, d]

can be explained by the fact they are often deleted, especially in word-final positions

of mono-morphemic words (Guy, 1991; Coetzee and Kawahara, 2013). Second, [l,

ô] can be explained by the fact that they are often the second/third consonant of a

onset cluster (e.g. [pl], [fô], [spô] etc.). It is well known that these positions are prone

to deletion (Harris, 1994), as predicted by their sonority slopes (the deletion should

result in a maximal sonority rise) (Ohala, 1999). Finally, I have no explanation for
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why [Z, N] are inserted or deleted more often than expected.

To briefly conclude, the diverged consonant segments that are the target/response

of a substitution/insertion/deletion more often than expected by their actual frequen-

cies can be accounted for using the fact that their phonetic properties are particularly

susceptible to misperception.

Next, the consonant segments that are the target/response of a substitution less

often than expected are examined. The diverged target segments are [z, dZ, tS, S, Z,

ô, N], and the diverged response segments are [z, dZ, tS, S, Z, ô, l, N]. All the fricatives

and affricates [z, dZ, tS, S, Z] can be explained by the fact that they are perceptually

robust and their acoustic cues lie within the consonants themselves; that is, they are

relatively independent of their environment (Wright, 2004). This pattern with the

fricatives is consistent with Bird’s (1998) findings that the fricatives [s, z] are the

target/response of a substitution less often than expected by their actual frequency.

Two of the remaining diverged segments are [ô, l]. One explanation is that they are

liquids which have high acoustic energy, and are high on the sonority scale; therefore,

they are particularly salient, and less prone to errors. The last diverged segment is

[N] for which I have no explanation since the other nasals have the reverse pattern,

[m, n] are the target/response of a substitution more often than expected.

Let us move on to with the consonant segments that are the target of deletion

and the response of insertion less often than expected. The diverged target seg-

ments are [tS, S, m], and the diverged response segment are [dZ, tS, S]. Similar to the

diverged segments with the substitutions, all the fricatives and affricates [dZ, tS, S]

can be explained with the fact that they are perceptually robust (Wright, 2004). The

remaining diverged segment is [m], for which I have no explanation.

To conclude, most of the diverged consonant segments that are the target/response

of a substitution/insertion/deletion more/less often than expected can be explained

phonetically. Those that are the target/response more often than expected are pho-
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netically weak, while those that are the target/response less often than expected are

phonetically strong. Therefore, the target/response patterns that cannot be captured

with a frequency account can be captured with a phonetic account.

4.2.2.2.2 Vowels Let us move on to the vowels. The correlation results are

summarised in Table 4.3, with the same format as Table 4.1.

Target Response

Frequency Measure Substitution Deletion Substitution Insertion

Token 0.8637∗∗∗ 0.8185∗∗∗ 0.8471∗∗∗ 0.6960∗∗

Type 0.8593∗∗∗ 0.6336∗ 0.8845∗∗∗ 0.5352∗
Type (Weighted) 0.8330∗∗∗ 0.6029∗ 0.8691∗∗∗ 0.5264+

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.3: Segmental frequency correlations (Spearman, two-tailed) of vowels between
target and response frequencies with actual frequencies of three frequency measures: the
superscript symbols denote the level of statistical significance; the bold value in each
column is the best correlation amongst the three frequency measures.

The overall patterns in Table 4.3 are essentially the same as those with the

consonants. All but one of the correlations reached statistical significance (α =

0.05). The exception is the correlation between the weighted type frequency and

insertion.
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Figure 4.5: The relationship between the target frequencies of substitution and the
three measures of actual segmental frequencies: vowels
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Figure 4.6: The relationship between the target frequencies of deletion and three
measures of actual segmental frequencies: vowels
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Figure 4.7: The relationship between the response frequencies of substitution and
three measures of actual segmental frequencies: vowels

Again, all the correlations are visualised as scatterplots, each fitted with a linear

regression line with confidence intervals. They are Figures 4.5, 4.6, 4.7 and 4.8.

Overall, the relative strength of the correlation values is well reflected in the plots,

particularly with insertion and deletion. Visually, all of the correlations do not

appear to be skewed by extreme outliers.

Given the correlation values are not perfect, it is worth examining the diverged

segments. The segments that fall outside the confidence intervals of the linear regres-

sion lines (in Figures 4.5, 4.6, 4.7 and 4.8) are summarised in Table 4.4. In Table
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Figure 4.8: The relationship between the response frequencies of insertion and three
measures of actual segmental frequencies: vowels

4.4, the row “More often” contains segments that are the target/response of a misper-

ception more often than expected by the best actual frequency measure (i.e. these

segments are above the linear regression). The row “Less often” contains segments

that are the target/response of a misperception less often than expected by the best

actual frequency measure.

Target Response

Substitution Deletion Substitution Insertion

More often [æ, E] [3, A] [I, E, 2] [3, A]
Less often [u, i] [u, a, 2, æ] [u, e, o] [u, o, 2, æ]

Table 4.4: Vowel segments diverged from actual frequency: the row “More often” de-
notes the segments that are the target/response of a misperception more often than
expected by the best actual frequency measure; the row “Less often” denotes the seg-
ments that are the target/response of a misperception less often than expected by the
best actual frequency measure.

Let us start with the vowel segments that are the target/response of a substitution

more often than expected. The diverged target segments are [æ, E], and the diverged

response segments are [I, E, 2]. All the diverged segments are in fact lax vowels, which

are phonetically short, with a lower intensity than tense vowels. Therefore, these lax

vowels are the target/response of a substitution more often than expected because
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they are phonetically weak.

Interestingly, the vowel segments that are the target/response of a substitution

less often than expected are all tense vowels. The diverged target segments are [u, i],

and the diverged response segments are [u, e, o]. Using the same argument as the lax

vowels, the divergence of these tense vowels can be explained; tense vowels are longer

with a higher intensity than lax vowels. Therefore, they are the target/response of

a substitution less often than expected, because they are phonetically strong. Fur-

thermore, these tense vowels in most of the vowel sets transcribed in the naturalistic

corpus are followed by an offglide [j] or [w], which makes them more distinctive and

less prone to misperception.

The vowel segments that are the target of deletion and the response of insertion

more often than expected are [3, A]. The divergence of [3] can be explained with its

high confusion with [@] and [A]. [3] is mostly often perceived as [A] 2.45% of the time,

followed by [@] 2.31% of the time (see Figure 3.8 in Chapter 3). [3] being confused as

[@] is perhaps due to their close acoustic distance. However, I have no explanation

for why [3] is perceived most often as [A].

The vowel segments that are the target of deletion and the response of insertion

less often than expected are [u, o, a, 2, æ]. I have no explanation for these diverged

segments, since they are a mixture of tense and lax vowels, front and back vowels,

and close and open vowels. To conclude, just as the diverged consonant segments,

most of the diverged vowel segments can be explained using a phonetic account.

Finally, the results of the consonants and the vowels are compared. For the

vowels, the correlation value ranges from 0.5264 to 0.8845, while tor the consonants,

the correlation value ranges from 0.7820 to 0.9670. While the correlation values of

the vowels were all relatively high, they are lower than those of the consonants. This

indicates that the amount of frequency bias is higher for the consonants than for

the vowels. The opposite is true with the phonetic bias, as found in Section 3.5 and
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Section 3.6 in Chapter 3. The amount of phonetic bias was stronger for the vowels

than for the consonants. Furthermore, the analysis of the diverged consonants and

vowels suggests that what cannot be captured with a frequency bias can be captured

with a phonetic bias. Together, one could speculate that the amount of frequency

bias complements the amount of phonetic bias in segmental confusions; that is to

say, they have an inverse relationship.

Regarding the three frequency measures, again unweighted type frequency outper-

forms weighted type frequency. The two measures of type frequency outperformed

token frequency for substitution, but only for the response frequencies. Just as

with consonants, we found that token frequency outperforms both measures of type

frequency for insertion and deletion. The earlier discussion of the three frequency

measures for the consonants also applies to the vowels.

4.2.2.3 Conclusion

This section examined whether the target and response frequencies in segmental

misperception can be explained using the actual frequencies in the language. This

question was examined for substitution (target and response), insertion (response)

and deletion (target) errors of consonants and vowels.

Section 4.2.2.2.1 examined the substitution, insertion and deletion errors of con-

sonants. The strength of the correlations was at a strong to very strong level (ρ =

0.7820 – 0.9670). Section 4.2.2.2.2 examined the substitution, insertion and deletion

errors of vowels. Again, the strength of the correlations was strong (ρ = 0.5264 –

0.8845). These strong correlations indicate that the actual segmental frequencies in

the language are a strong factor for the probability of a certain phone being a target

or a response of a misperception. To recap, we are not referring to the probability

of a phone being misperceived, and we are referring to the probability of a phone

being a target or a response of a misperception, given there is a misperception.
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Concretely, the segment [n] is a more frequent segment than [Z]. Given a phone x

will be misperceived, this phone x is more likely to be [n] rather than [Z]; therefore,

the target is biased by the actual frequency. Similarly, given a phone x will be

misperceived, the perceived phone y is more likely to be [n] rather than [Z].

Most of the segments that diverged from their actual frequencies can be explained

using a phonetic account. With the consonants, the segments that were the tar-

get/response of a substitution/insertion/deletion more often than expected by their

actual frequencies were 1) phonetically weak – [t, d], 2) susceptible to cluster reduc-

tion – [l, ô]) and 3) susceptible to phonetic weakening due to lexical frequencies –

[n] in “and”, and [D] in “the”. Similarly, the consonant segments that were the tar-

get/response of a substitution/insertion/deletion less often than expected by their

actual frequencies were mostly fricatives and affricates which are phonetically strong.

With the vowels, there was a clear tense-lax difference with substitutions. Lax vowels

were the target/response of a substitution more often than expected by their actual

frequencies, because lax vowels are phonetically weak. Tense vowels were the tar-

get/response of a substitution less often than expected by their actual frequencies,

because tense vowels are phonetically strong.

Furthermore, we found that the correlation values are lower for vowels than for

consonants, which indicates that consonants are more sensitive to this frequency

bias than vowels. Given that the opposite is true with phonetic bias, as found in

Chapter 3 that the diverged segments can mostly be explained using a phonetic

account, I speculated that the amount of frequency bias has an inverse relationship

with the amount of phonetic bias in segmental confusions. Further analyses are

needed to substantiate this speculation by regressing (e.g. with a regression model)

the confusion patterns with both the frequency bias and the phonetic bias, because

it is possible that the phonetic bias also correlates with the frequency bias.

Again, it was found that two measures of type frequency outperformed token
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frequency for substitution. This advantage of type frequency will also be found in

Section 4.4.2. Surprisingly, token frequency outperformed both measures of type

frequency for insertion and deletion. Given that type frequencies are lexically-based,

one explanation is that this difference between substitution and insertion/deletion

is due to the fact that insertion and deletion are less sensitive to lexical informa-

tion than substitution, because substitution errors have to involve two lexical items,

while insertion and deletion errors could involve only one (i.e. whole word dele-

tions/insertions).

4.2.3 Asymmetrical confusion

The second aspect of segmental confusions concerns their asymmetrical patterns. Re-

call that three asymmetrical patterns (namely TH-fronting, velar nasal fronting, and

back vowel fronting) in naturalistic and experimental misperception were analysed

in Chapter 3, Section 3.8. Indeed, all three patterns were confirmed, with [T] being

perceived as [f], [N] as [n] and back vowels as front vowels, more often than the re-

verse. Finally, we used them as evidence for a perceptual-based account of sound

change. However, it is possible that their asymmetries are affected by their relative

segmental frequencies. For instance, say that [f] is more frequent in the language

than [T]; [f] could then be chosen as the perceived segment for the intended segment

[T] more often than the reverse, because there is a response bias due to frequency

differences. This asymmetrical pattern of [T] > [f] can therefore be explained without

the need of invoking accounts of perceptual biases.

It is worth noting that this bias is similar to the response bias mentioned earlier

in Section 4.2.2. Nonetheless, they differ in terms of whether the correctly perceived

segments are considered. The bias in Section 4.2.2 concerns only the segments that

are involved in a segmental misperception and not the correctly perceived segments,

while the current bias concerns both because asymmetricality depends on the propor-

362



tions of correctly and incorrectly perceived segments (see Chapter 3, Section 3.8.1

for the method for calculating asymmetries).

Benkí (2003) conducted an analysis of whether the asymmetrical patterns in

segmental confusions can be captured under a frequency/lexical account. Using ex-

perimentally induced misperception of nonsense CVC syllables, the author computed

the strength and direction of the asymmetries using the criterion measure (hence-

forth c bias) from choice theory of eleven pairs of segments. These eleven pairs of

segments were three onset pairs – [t, p], [k, p] and [ô, l], three vowel pairs – [æ, A:],

[u, i] and [o, e], and five coda pairs – [t, p], [k, p], [k, t], [g, d] and [m, n]. The

relative frequency measures were computed by subtracting the frequency of one of

the two segments in a given pair from the frequency of the other segment in the same

pair. Four different frequency measures were tested separately. They are a) the num-

ber of occurrences per 100 phonemes, b) the number of lexical items containing the

phoneme, c) the number of occurrences per million words, and d) the sum of the

log-transformed frequencies of the lexical items containing the phoneme. In fact, c)

is virtually the same as our token frequency measure, and b) and d) are the same as

our two measures of type frequency. The author found that on the whole all of the

frequency measures captured a sizable portion of the variance (R2 from 0.2 to 0.3)

of the c bias values; however, none of them were statistically significant at α = 0.05.

Of the four frequency measures, the number of lexical items containing the phoneme

(type frequency) captured most variance, R2 = 0.290, and with the smallest p-value,

p = 0.088, which is near-significant.

Benkí’s (2003) findings are encouraging. The high level of variance explained

across multiple relative frequencies indicates that the relative frequency of the two

segments can predict the strength and direction of their confusions. Although the

p-values did not reach significance, it is likely that this is due to the small number

of pairs tested (11 pairs). Therefore, by testing more segmental pairs, we could then
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have a more complete picture of whether the relative frequency is a useful factor

for predicting asymmetries. In the current analyses, all segmental pairs are tested

separately for consonants and vowels. Furthermore, just as Benkí (2003), multiple

frequency measures are examined.

To conclude, a number of questions can be raised. Firstly, can the strength

and direction of the asymmetrical pattern for each pair of phones be captured by

the relative segmental frequencies in the language? Secondly, how much variance

can be captured? Thirdly, which of the three frequency measures can capture the

most variance? Finally, would the findings of the previous questions differ between

consonants and vowels?

4.2.3.1 Method

Regarding the consonant pairs, with 26 consonants, 325 consonant pairs are possible.

For the vowel pairs, with 14 vowels, 91 vowel pairs are possible. The strength and

direction of the asymmetries were estimated using the criterion measure (c bias)

as described in Chapter 3, Section 3.8.1. The c bias values were computed for all

325 consonant pairs and all 91 vowel pairs. Just as in Chapter 3, Section 3.8.1, we

excluded pairs that have no confusion in either direction, because their resultant c

bias values are dependent purely on the smoothing process. The order of the two

segments in a given pair can affect the sign of the c bias; therefore, it is worth

establishing a notation system for later reference. For a given pair [Segment 1 >

Segment 2], a positive c bias value means that Segment 1 is perceived as Segment 2

more often than the reverse, a negative c bias value means the Segment 2 is perceived

as Segment 1 more often than the reverse, and a zero c bias value means that there

is no asymmetrical confusion. The first segment in a given pair is referred to as

Segment 1 and the second segment as Segment 2.

The relative frequency of each segmental pair was calculated by taking a ratio of
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the frequency of Segment 2 and the frequency of Segment 1. To remove the skewness

of frequency values, the ratios were then log-transformed for all three measures. This

is summarised as the following metric: Log10(FrequencySeg2/FrequencySeg1). A

positive log-ratio means that Segment 2 is more frequent than Segment 1, a negative

log-ratio means that Segment 1 is more frequent than Segment 2, and a zero log-

ratio value means that the two segments are equally frequent. This log-ratio has a

further advantage of having zero as the centre of the scale just as the c bias value.

Therefore, if relative frequencies can predict asymmetries, then a positive correlation

is expected between the log-ratios and the c bias values.

A non-parametric correlation, Spearman, was used to compare the two sets of

frequencies, since the data are not normally distributed; therefore, a non-parametric

correlation is more appropriate.

4.2.3.2 Analyses

Table 4.5 summarises the correlation analyses for consonants and vowels between the

c bias values (which reflect the confusion asymmetries) and the log-ratios (which re-

flect the frequency asymmetries). The table shows the correlation values (Spearman,

two-tailed) as well the level of statistical significance.

Frequency Measure Consonants Vowels

Token 0.8068∗∗∗ 0.8478∗∗∗

Type 0.7080∗∗∗ 0.7851∗∗∗
Type (Weighted) 0.7109∗∗∗ 0.7847∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.5: Correlations (Spearman, two-tailed) between confusion asymmetries and
frequency asymmetries of consonants and vowels with three frequency measures: the
superscript symbols denote the level of statistical significance; the bold value in each
column is the best correlation amongst the three frequency measures.

All the correlation values are highly significant at a strong to very strong level

(ρ = 0.71 – 0.85). Token frequency yields higher correlation values than the two
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measures of type frequency. The unweighted frequency measure does not outperform

the weighted one consistently, only with vowel asymmetries, and not with consonant

asymmetries. Finally, we see that the correlations with the vowels are stronger than

those with the consonants. These findings are surprising, considering in the previous

analyses of segmental frequency in Section 4.2.2 we found the exact opposite patterns

– a) consonants are more affected by frequency than vowels and b) the two measures

of type frequency outperform token frequency. Regarding how the vowels are more

affected by frequency than consonants in terms of confusion asymmetries, I have

no immediate explanation. Regarding the sudden advantage of token frequency

in predicting confusion asymmetries, one explanation lies in how asymmetries are

defined. Recall in Chapter 3, Section 3.8.1, we described the criterion measure (c

bias) which is used to reflect the confusion asymmetries. The c bias measure relies on

the proportion (not count) of confusions in each direction, and the frequencies of the

correctly perceived segments (the diagonal cells in a confusion matrix) are required to

compute the proportions. In the naturalistic corpus, the frequency of the correctly

perceived segments should highly correlate with their frequency in the language,

because the naturalistic corpus is a sample of the language. This is indeed the

case, as indicated by the correlation (Spearman, two-tailed) between the frequency

of the correctly perceived segments and their frequency in the language. With the

consonants, the correlation values are 0.9835, 0.8427 and 0.8345, with token, type

and weighted type frequency respectively, and they were all highly significant. With

the vowels, the correlation values are 0.9648, 0.8373 and 0.8109, with token, type and

weighted type frequency respectively and they were all highly significant. Given that

the correctly perceived segments are extracted from all the segments in all words that

are correctly perceived in the corpus, these extracted frequencies are, in fact, token

frequency, and not type frequency. Therefore, the advantage of token frequency in

predicting the confusion asymmetries can be explained.
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To examine these relationships further, we will visualise the correlations as scat-

terplots, fitted with linear regression lines. The scatterplots of the consonants are

shown in Figure 4.9 and those of the vowels are shown in Figure 4.10. Focusing on

the consonants, Figure 4.9 shows that the regression lines with the two measures of

type frequency are poorly fitted, compared to that with token frequency. A closer

inspection of the segmental pairs reveals that the poor fits are due to [D] having a

low type frequency, as [D] is found in all the pairs that are outliers (visually). Let us

move on to the vowels. Figure 4.10 shows that the regression line has a tighter fit

with token frequency than with the two measures of type frequency. However, unlike

the consonants, visually the differences cannot be attributed to specific segments.
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Figure 4.9: The relationship between confusion asymmetries and frequency asymme-
tries of consonants

Finally, based on our results in this section, we should reconsider our conclusion

based on the analyses in Chapter 3, Section 3.8, where we analysed the three asym-

metrical patterns, namely TH-fronting, velar nasal fronting, and back vowel fronting.

Our results in this section suggest that confusion asymmetries are affected by the

relative segmental frequencies found in the language, by examining all the possible

asymmetries (i.e. all combinations of two segments). In fact, TH-fronting and velar

nasal fronting can both be explained using a frequency account, since [n] is more

frequent than [N], and [f] is more frequent than [T].
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Figure 4.10: The relationship between confusion asymmetries and frequency asym-
metries of vowels

By visualising the direction and strength of the asymmetries with a vowel chart,

we can better evaluate the back vowel fronting pattern. The asymmetrical pat-

terns for all the vowel combinations are shown in Figure 4.11. Figure 4.11 contains

three sub-figures. Figure 4.11a summarises the confusion asymmetries. Figure 4.11b

summarises the token frequency asymmetries. Figure 4.11c summarises the type

frequency asymmetries (there are no visual differences between the weighted and

unweighted type frequency measures). In each figure, each vowel is connected with

all other vowels with a straight line, the direction of the arrow head reflects the di-

rection of the asymmetry, and the size of the arrow head reflects the strength of the

asymmetry. Visually, all three figures are extremely similar in terms of the direction

of the arrows.

A back vowel fronting pattern can indeed be found in the confusion asymmetries

(Figure 4.11a) as all the back vowels (except [A]) have fewer incoming arrows than

the front vowels. However, the same pattern can be found also with the token

frequency asymmetries and type frequency asymmetries in Figure 4.11b and Figure

4.11c respectively. This suggests that the back vowel fronting pattern is affected by

segmental frequencies.

Although unrelated to the fronting pattern, it is worth noting that there is a
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Figure 4.11: Visualisation of vowel asymmetries: a) confusion asymmetries, b) to-
ken frequency asymmetries, c) type frequency asymmetries (both weighted and un-
weighted).

centring pattern with most vowels moving into [@] in both confusion asymmetries

and frequency asymmetries. This centring pattern in frequency asymmetries could

in fact explain an earlier observation in Chapter 3, Section 3.4.3.1, that there is a

confusion bias of open/close vowels being perceived as mid vowels, which is essentially
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centring.

4.2.3.3 Conclusion

This section examined the effect of frequency on the asymmetrical patterns in segmen-

tal confusions. In Chapter 3, Section 3.8, we analysed three asymmetrical patterns,

namely TH-fronting, velar nasal fronting, and back vowel fronting, in naturalistic

and experimental misperception. As an extension to the previous analyses, we corre-

lated the frequency asymmetries (the difference in frequency between two segments)

and the confusion asymmetries of all possible pairs of segments for both vowels and

consonants. The correlations were highly significant at a strong to very strong level

(ρ = 0.71 – 0.85). This is a surprising finding, suggesting that confusion asymmetries

can be affected by frequency asymmetries.

Indeed, the three asymmetrical patterns, TH-fronting, velar nasal fronting, and

back vowel fronting, were explicable using frequency, since [n] is more frequent than

[N], and [f] is more frequent than [T], and front vowels are generally more frequent

than back vowels. These results suggest that we should reconsider our conclusion in

Chapter 3, Section 3.8, such that confusion symmetries are a function of not only

perceptual biases (Ohala, 1981; Ohala, 1989), but also frequency biases.

Furthermore, we found that vowels are more affected by frequency than conso-

nants and that token frequency outperformed type frequency. These are the exact

opposite patterns from those found in Section 4.2.2. I have no explanation for why

vowels are more affected by frequency than consonants. However, regarding the ad-

vantage of token frequency, I proposed that it is due to how confusion asymmetries

are defined. The criterion measure (c bias) which is used to reflect the confusion

asymmetries relies on the frequencies of the correctly perceived segments (the diago-

nal cells in a confusion matrix). The correctly perceived segments are extracted from

all the segments in all words that are correctly perceived in the corpus. Therefore,
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they are token frequency, and not type frequency. The advantage of token frequency

should not be interpreted as a linguistic advantage, but as a methodological bias.

4.2.4 Conclusion

This section conducted separate sets of analyses to examine the role of segmental fre-

quencies in segmental confusions. We focused on two aspects of segmental confusions

that could be the result of the segmental frequencies in the language, namely a) the

effect of frequency on target and response biases, and b) the relationship between

frequency asymmetries and confusion asymmetries.

Section 4.2.2 found that the target and response biases can be captured nearly

perfectly with segmental frequencies as indicated by the strong to very strong level

of correlations. This pattern is true for substitutions, insertions and deletions. We

found that the effect of frequency is stronger for consonants than for vowels.

Section 4.2.3 found that confusion asymmetries can be affected by frequency

asymmetries, as indicated by the strong level of correlations. The theoretical im-

plication of this is that confusion asymmetries are modulated by top-down factors

such as segmental frequencies. In other words, the result suggests that confusion

symmetries is a function of both perceptual biases (Ohala, 1981; Ohala, 1989), and

frequency biases. Further work is needed to examine whether frequency asymmetries

play a role in experimental misperception such as Miller and Nicely (1955).

In terms of the comparison between the different frequency measures, overall we

found type frequency outperformed token frequency in substitution (but not insertion

and deletion), which supports the claims that pattern strength in the lexicon is

determined by type, and not token frequency (Bybee, 1995; Albright and Hayes,

2003; Hay, Pierrehumbert, and Beckman, 2004).

Together all these findings allow us to make the following conclusions. Given

that a segment will be misperceived, the target and the response are determined
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by the actual frequencies; that is, more frequent segments are more likely to be

misheard (target) and incorrectly chosen as the perceived segment (response). This

holds for substitution, insertion and deletion errors. Crucially this frequency bias

operates independently on the intended segments and the perceived segments. Since

frequency can partly determine the intended and perceived segment, it can also bias

the overall confusion patterns, namely the asymmetricality of confusions.

To conclude, these findings confirm the fact that listeners are sensitive to fre-

quency information on a segmental level in misperception, and as such there is a

top-down effect from the lexicon.

4.3 Syllable factors

The previous section examined the role of segmental frequency in segmental misper-

ception. Let us move away from the segment level factors. This section will examine

whether factors on the syllable level play a role in segmental misperception.

We will focus on the rate of segmental errors, ignoring the nature of the perceived

segments (what the intended segments are misperceived as). Three syllable-based

factors are examined for their effect on the error rates. The first factor is the syllable

constituency – the position of the segment in a syllable (namely onset, nucleus and

coda). Do segmental errors occur evenly across the three constituents? The second

factor is the syllable position – the position of the syllable (that contains the segment)

in a word. For a polysyllabic word, three positions can be generalised, namely

word initial, word medial, and word final. For a monosyllabic word, this three way

categorisation cannot be applied. Do segmental errors occur more often in word-

final syllables than word initial syllables? The third factor is stress – whether the

segment is in a stressed or unstressed syllable. Do segmental errors occur more in

unstressed than stressed syllables? These factors (apart from syllable position which
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is only relevant in the polysyllabic words) are examined separately for monosyllabic

and polysyllabic words.

4.3.1 Syllable constituency

The three constituents are onset, nucleus and coda. Using phonetic arguments and

previous experiment findings, predictions can be made as to which constituents are

more likely to be misperceived.

Firstly, the difference between the nucleus, and the onset/coda is apparent, as

the nucleus contains vowels and the onset/coda contains consonants. Vowels are

often longer, and acoustically more intense (cf. sonority) than consonants. Recall

that in Section 3.4.1 of Chapter 3 we analysed the overall error rate of vowels and

consonants, and we found that consonants are more erroneous than vowels with the

rates 19.96% and 17.67% respectively. Therefore, we would naturally expect that

the nucleus is less erroneous than the onset/coda.

Secondly, the perceptual difference between onset and coda is less clear. On the

one hand, onsets are argued to have a higher degree of cue redundancy, e.g. there

is greater redundancy of cues in the CV transition than VC transitions, which is

especially true in stop consonants which have VOT and always have release bursts

(Wright, 2004). On the other hand, codas are predictable by their preceding nucleus.

For instance, the length of the vowel can cue the voicing of the final consonants (pre-

fortis clipping) and vowels have been shown to lengthen before fricatives (Peterson

and Lehiste, 1960). Vowel nasalisation is mainly caused by nasal codas, so the

presence of vowel nasalisation serves as a stronger cue for nasal codas than for nasal

onsets. Furthermore, there are studies that suggest the cues of codas are spanned

over a greater duration than those of onsets. For instance, formant two and formant

three have greater movement in codas than in onsets (Broad and Fertig, 1970); and

the transition durations tend to be longer in VC than CV positions (Lehiste and
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Peterson, 1961). Besides the acoustic information, the phonotactic information of

English makes codas more predictable, because the range of codas is more restricted

than that of onsets (Kessler and Treiman, 1997).

Thirdly, while we would naturally expect that the nucleus is less erroneous than

onset/coda because of the difference between vowels and consonants, it is possible

that the nucleus is just as erroneous as the coda, with the onset being the most erro-

neous – Onset > Nucleus/Coda (“>” means more erroneous than). This prediction

is supported by the following facts. Firstly, the phonotactic analyses of Kessler and

Treiman (1997) found that consonants have a different distribution within the rime

than outside the rime. That is, the co-occurrence constraints lie with the nucleus

and the coda more than with the onset and the nucleus in a CVC syllable. Secondly,

the phonetic arguments given in the previous paragraph do not only highlight the

perceptual salience of codas, but also the fact that the nucleus and the coda overlap

more in terms of their acoustic cues than the nucleus and the onset.

Besides using phonetic arguments to form our predictions, we could review pre-

vious confusion experiments which tested the error rates of these constituents. The

classic confusion study by Wang and Bilger (1973) tested the confusiability of con-

sonants in both CV and VC syllables. As summarised in Chapter 3, Section 3.7.1.3,

Wang and Bilger (1973) tested two sets of CV and VC syllables composed of 24

consonants and three vowels. The first set of CV and VC (CV-1 and VC-1) contains

the same set of consonants [p], [t], [k], [b], [d], [g], [f], [T], [s], [S], [v], [D], [z], [Z], [tS],

[dZ]. The second set of CV and VC (CV-2 and VC-2) contains different consonants

with [p], [t], [tS], [dZ], [l], [ô], [f], [s], [v], [m], [n], [h], [hw], [w], [j] for CV-2, and

[p], [t], [g], [N], [m], [n], [f], [T], [s], [S], [v], [D], [z], [Z], [tS], [dZ] for VC-2. On the

one hand, CV-2 and VC-2 are in a sense more realistic, as they contain consonants

that can only be in either CV or VC, namely [h] and [N]. On the other hand, CV-1

and VC-1 are balanced, which allows for a more direct comparison of onsets and
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codas. Codas were more erroneous than onsets in the second syllable set (CV-2 and

VC-2); however, this difference is inconsistent with the first syllable set, with codas

being more erroneous only at more difficult signal to noise ratios and with the vowel

[A:, and u:], but not [i:] (Wang and Bilger, 1973, pp. 1251–1252). Despite the in-

consistency with CV-1 and CV-2, codas were, overall, more erroneous than onsets.

In another confusion experiment, Cutler et al. (2004) tested all possible standard

American English CV and VC sequences. However, unlike Wang and Bilger (1973),

onsets were more erroneous than codas (with an average 5% difference in error rate).

Besides the confusion experiments of CV, VC syllables, Redford and Diehl (1999)

tested 147 CVC syllables (7 consonants × 3 vowels × 7 consonants), and found

that codas are more erroneous than onsets. They conducted a further acoustic

analysis of the stimuli and found that the perceptual advantage of onsets is partly

due to their longer duration and higher amplitude. That is, onsets are produced with

greater acoustic distinctiveness than codas. In another CVC confusion experiment

conducted by Benkí (2003), it was found that codas were more erroneous than both

onsets and nuclei, and that onsets and nuclei are similarly erroneous (Benkí, 2003,

pp. 137–140).

The conflicting findings between Cutler et al. (2004) and the other studies (Red-

ford and Diehl, 1999; Benkí, 2003) were examined by Cutler et al. (2004). The author

subsetted their data to best match the consonants and vowels used in Redford and

Diehl (1999) and Benkí (2003). After the subsetting, they still found onsets being

more erroneous than codas. The conflicting findings are therefore likely due to the

different experimental conditions, such as the signal to noise ratio, the number of

consonants and vowels tested, the number of speakers and listeners tested, etc. Given

this mismatch between Cutler et al. (2004) and the other experimental studies, the

confusion patterns in the naturalistic corpus could, in fact, be used to settle the

debate. In any case, there is converging evidence from multiple confusion studies
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(Wang and Bilger, 1973; Redford and Diehl, 1999; Benkí, 2003) with the exception

of Cutler et al. (2004) that codas are more erroneous than onsets. In addition, Benkí

(2003) found that onsets and nuclei are similarly erroneous.

In sum, considering both phonetic arguments and the relative error rates found

in previous experimental confusion data, it is unclear what the general pattern is. In

fact, a range of predictions can be made regarding the relative error rates of onset,

nucleus and coda. They are summarised below (“>” means more erroneous than).

• [Onset, Coda] > Nucleus

• Onset > Coda > Nucleus

• Coda > Onset > Nucleus

• Coda > [Onset, Nucleus]

• Onset > [Nucleus, Coda]

Furthermore, it is unclear whether these predictions would hold for both monosyl-

labic and polysyllabic words, given that all the above arguments were based on data

on single syllables. The perceptual/phonetic arguments were based mostly on exper-

imental data that tested only single syllables (Peterson and Lehiste, 1960; Wright,

2004). The same is true for the phonotactic analysis by Kessler and Treiman (1997)

which was also based on single syllables (monomorphemic CVC words). Finally, the

experimental confusion data are also restricted to single syllables (CV, VC or CVC).

To conclude, amongst these predictions, the most likely one is the one based

on experimental confusion studies, Coda > [Onset, Nucleus], because we are also

analysing confusion data (though naturalistic, not experimental). Since the experi-

mental data were based on single syllables, the most conservative prediction is that

the error rates in monosyllabic words have the trend – Coda > [Onset, Nucleus],

with coda being more erroneous than onset/nucleus. We lack specific predictions for

polysyllabic words.
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4.3.2 Syllable position

In order to form a prediction regarding the effect of syllable position on error rates,

we first consider the acoustic realisation of the segments in word-initial, medial and

final positions.

In an acoustic analysis, Lindblom (1968) tested the effect of syllable position on

the duration of segments. The author found that segments are longer in final syllables

than in medial syllables, which in turn are longer than the segments in initial syllables.

This lengthening effect holds for both unstressed and stressed syllables and can be

attributed to a final lengthening effect.

The final lengthening effect (Klatt, 1975) is the effect of lengthening the final

word of a phrase. Traditionally, experimental studies have examined only the final

syllable of the final word, but in fact there is evidence in American English that

the lengthening begins before the final syllable (Turk and Shattuck-Hufnagel, 2007).

In a production study of American English by Turk and Shattuck-Hufnagel (2007),

they found that, besides the final syllable (especially the rime), other regions are

lengthened as well. These are the rime of the main stressed syllable (when it is not

word final), and the regions between the main stressed syllable and the final syllable

(though only sporadically). In sum, generally there is a progressive lengthening effect

across the final word of a phrase with an increase of lengthening towards the final

syllable.

Using the patterns found in the final lengthening effect, assuming that most words

can appear as the final word of a phrase, word final syllables can therefore on average

be longer than word medial syllables, which can be in turn longer than word initial

syllables. As such, this can be used to form a prediction that segments in word final

syllables are less erroneous than those in word medial syllables and in turn are less

erroneous than those in word initial syllables, because the longer the duration of a

segment, the more perceptually salient it is, which means it is less erroneous. This
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can be summarised as: Word Initial > Word Medial > Word Final (“>” means more

erroneous than).

Alternatively we could extend the phonotactic account of predictability men-

tioned in Section 4.3.1. Concretely, the number of possible segments in a given

segment position in a word decreases as the position moves from left to right. That

is, the number of lexical candidates decreases with every additional segment per-

ceived. This is essentially the idea of uniqueness points in word recognition (Luce,

1986a). This could mean that segments in word-final syllables are more predictable

than those in earlier syllables, because there are fewer potential lexical candidates.

These predictable segments will therefore have lower error rates. In sum, this pre-

dictability account makes the same prediction as the duration account, with the same

trend Word Initial > Word Medial > Word Final.

4.3.3 Stress

Acoustically speaking, stressed syllables are more perceptually salient than unstressed

syllables, such that they have longer duration, higher intensity and they can carry

extreme intonation (Browman, 1980). Indeed, a stressed syllable has been argued

to be an “island of reliability” (Pisoni, 1981). That is, it contains reliable phonetic

information. Furthermore, there are models of word segmentation that rely on the

stressed syllable as a segmentation cue (Cutler and Butterfield, 1992; Cutler and

Norris, 1988), which implicitly highlights the importance of stress and syllables in

perception.

Given the robustness of a stressed syllable, we would expect that segments in

a stressed syllable are less likely to be misperceived than those in an unstressed

syllable.
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4.3.4 Method

All data used in the current section are the naturalistic segmental confusions, which

are context-free, as described in Chapter 3, Section 3.2. Three syllable factors were

computed for each of the intended segments, namely, syllable constituency (onset,

nucleus, coda), syllable position (initial, medial and final), and stress (stressed and

unstressed). In addition to these factors, each of the intended segments was tagged

as monosyllabic or polysyllabic.

The glmer function from lme4 (Bates et al., 2014) in R (R Core Team, 2013)

was used to construct logistic mixed-effects models, with the bobyqa optimizer. The

predictee and predictors are listed below.

Predictee: Segment Error (Incorrect vs. Correct)

Predictors of fixed effects: Syllable Constituency, Syllable Position and Stress.

All the predictors are categorical.

Variables of random effects: Intended Words, Utterances, and Corpora.

In terms of the fixed effects, the categorical predictors need to be contrast coded.

Stress is coded as [Unstressed vs. Stressed]. Syllable Position is reversed helmert

coded, with [Final vs. the mean of Medial and Initial], and [Medial vs. Initial]. The

reason for coding syllable position as such is to better capture the progressive effect

of syllable position. Finally, Syllable Constituency is coded in two different ways, one

for monosyllabic words and one for polysyllabic words. For the monosyllabic words,

it is coded as [Onset vs. Coda] and [Nucleus vs. Coda]. For the polysyllabic words,

it is coded as [Nucleus vs. Onset] and [Coda vs. Onset]. The reason for doing so

will become apparent in the beginning of the analyses section.

In terms of the random effects, three variables were included, Intended Words,

which is the intended word that contains the segment, Utterances, which is the
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unique number given to each utterance (which is each an instance of misperception),

and Corpora, which is the seven subcorpora used to construct the combined corpus:

Browman (1978), Bird (1998), Labov (2010), Bond (Adult) (1999), Bond (Children)

(1999), Nevins (2009) and Nevins (2010). These random effects would allow us to

control for the variability of segment errors in specific words, utterances, and corpora.

Multiple, separate, mixed-effects models were created to test the fixed effects.

They are described during the analyses.

4.3.5 Analyses

In this section, we will begin by visualising the error rates and describe any differences

between error rates due to the three factors. After identifying these differences, the

statistical models will then be constructed to examine whether these differences

are significant. Finally, we will discuss the significant differences and whether they

confirm our initial predictions of the three factors.

Before creating the mixed-effects models, we will first visualise the error rates in

all possible combinations of the three syllable factors. This is done separately for

monosyllabic and polysyllabic words. The visualisation is shown in Figure 4.12. The

figure is divided into eight sets of bar charts. In each bar chart, there are three bars,

representing the error rates of the three syllable constituents – onset, nucleus and

coda – respectively. In each row of the figure, there are three bar charts, representing

the error rates of the three syllable positions – initial, medial and final. The bar charts

in the first two rows represent the error rates of unstressed polysyllabic words and

unstressed monosyllabic words. Finally, the bar charts of the last two rows represent

the error rates of the stressed polysyllabic words and stressed monosyllabic words. It

is worth noting that the assignment of the syllable position for monosyllabic words

as word initial is arbitrary. Interestingly, it has been suggested that monosyllables

can be treated as initial syllables in terms of their phonological behaviour (Becker,
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Figure 4.12: Segmental error rates by syllable constituency, syllable position, and
stress: error rate is defined as the number of segmental errors in position x divided by
the number of segments in position x.
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Nevins, and Levine, 2012).

Starting with the unstressed polysyllabic words (the first row), we can see that

there is a constituency effect and a syllable position effect. Onset has a higher error

rate than nucleus and coda, regardless of the syllable position. Initial syllables have

a higher error rate than medial syllables, which in turn have a higher rate than final

syllables. Both of these effects can also be found with the stressed polysyllabic words

(the third row), but the size of the effect seems to be weaker. The exception is that

the constituency effect is absent in the initial stressed syllables in polysyllabic words.

Overall, there is a stress effect in the polysyllabic words. Segments in unstressed

syllables have higher error rates than those in stressed syllables.

Moving on to the monosyllabic words, there is a definite stress effect. Segments

in unstressed syllables have lower error rates than those in stressed syllables. The di-

rection of this effect is unexpected, and will be discussed later. Furthermore, there is

a subtle constituency effect, with coda being more erroneous than onset and nucleus.

This effect holds for both stressed and unstressed monosyllabic words.

4.3.5.1 Polysyllabic words

The polysyllabic words are analysed in a mixed-effects logistic model with syllable

constituency, syllable position and stress as fixed effects, and intended word, utter-

ance, and corpora as random intercepts. The model has the formula:

Segment Error ∼ Syllable Constituency+Syllable Position+Stress+

(1|Intended Word) + (1|Utterances) + (1|Corpora)

Given the syllable constituency has onset being more erroneous than nucleus and

coda (Onset > [Nucleus, Coda]), the following contrast coding is used to test this

trend – [Nucleus vs. Onset] and [Coda vs. Onset]. If both of the contrasts are

significant, then this would confirm the trend Onset > [Nucleus, Coda].
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Fixed effects Estimate SE z p(> |z|)

(Intercept) −2.0202 0.1379 −14.647 < 2× 10−16∗∗∗

Syllable Constituency [Nucleus vs. Onset] −0.2449 0.0341 −7.182 6.86× 10−13∗∗∗

Syllable Constituency [Coda vs. Onset] −0.1288 0.0448 −2.879 0.004∗∗

Syllable Position [Medial vs. Initial] −0.1256 0.0289 −4.353 1.35× 10−5∗∗∗

Syllable Position [Final vs. (Medial, Initial)] −0.0855 0.0144 −5.956 2.58× 10−9∗∗∗

Stress [Unstressed vs. Stressed] 0.4152 0.0426 9.747 < 2× 10−16∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Random effects Variance

Intended Word (Intercept) 2.2454
Utterances (Intercept) 1.9136
Corpora (Intercept) 0.1066

Data size N

Observations 37,145
Intended Word 3,367
Utterances 3,621
Corpora 7

Table 4.6: Logistic mixed-effects model: predicting segment errors in stressed and
unstressed polysyllabic words with syllable factors – syllable constituency, syllable po-
sition and stress.

Table 4.6 summarises the mixed-effects model. All three syllable factors – syllable

constituency, syllable position and stress – are significant. Stress has the expected

effect, such that a segment in an unstressed syllable is more likely to be misheard than

that in a stressed syllable, as indicated by the positive estimate. Both contrasts of

syllable position, [Medial vs. Initial] and [Final vs. (Medial, Initial)], have a negative

estimate, which means a segment in a medial syllable is more likely to be misheard

than that in an initial syllable, and a segment in a final syllable is more likely to

be misheard than that in a medial or initial syllable. Both contrasts of syllable

constituency, [Nucleus vs. Onset] and [Coda vs. Onset], have a negative estimate

which means nucleus segments and coda segments are less likely to be misheard than

onset segments.

Firstly, the mixed-effects model (as summarised in Table 4.6) confirms stress as

a significant factor of segmental errors. It is in the predicted direction, Unstressed
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> Stressed, with unstressed syllables being more erroneous than stressed syllables.

This finding supports the idea of a stressed syllable being an “island of reliability”

(Pisoni, 1981).

Secondly, syllable position is also a significant factor, and again the effect is as

predicted, Word Initial > Word Medial > Word Final, with a decreasing amount of

errors from the first syllable to the last syllable of a word. This finding can be ex-

plained by two accounts. The first account is the final lengthening effect (Lindblom,

1968; Turk and Shattuck-Hufnagel, 2007) (the amount of lengthening increases to-

wards the end of a polysyllabic word). The second account is the predictability effect

(cf. the uniqueness point Luce, 1986a) (such that the predictability of each segment

increase towards the end of a word).

Thirdly, syllable constituency is also a significant factor. The effect matches one

of the predictions, Onset > [Nucleus, Coda], such that onset is a more erroneous

constituent than nucleus and coda. This prediction is based on the fact that there

is a considerable amount of overlapping of phonetic cues between coda and nucleus,

and that the rime is perceptually more salient than the onset. The fact that it does

not match the prediction Coda > [Onset, Nucleus] is not too surprising; although

it is based on confusion experiments, the stimuli tested were always monosyllables,

and therefore the prediction should not necessarily hold for polysyllables. As we

will see later, the prediction Coda > [Onset, Nucleus] is indeed more appropriate for

monosyllabic words.

Finally, while both contrasts of syllable constituency are significant, the contrast

[Coda vs. Onset] has a relatively high p-value of 0.004, which is perhaps due to

the divergences with the initially stressed polysyllabic word condition as previously

mentioned. Given the divergence, another mixed-effects model is constructed to

examine whether the syllable constituency factor holds for unstressed syllables. The

model has the formula:
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Segment Error ∼ Syllable Constituency + Syllable Position +

(1|Intended Word) + (1|Utterances) + (1|Corpora)

Fixed effects Estimate SE z p(> |z|)

(Intercept) −2.2335 0.0911 −24.518 < 2× 10−16∗∗∗

Syllable Constituency [Nucleus vs. Onset] −0.0924 0.0533 −1.732 0.0834+

Syllable Constituency [Coda vs. Onset] 0.0056 0.0807 0.070 0.9443n.s.

Syllable Position [Medial vs. Initial] −0.1351 0.0586 −2.303 0.0213∗

Syllable Position [Final vs. (Medial, Initial)] 0.0119 0.0358 0.331 0.7409n.s.

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Random effects Variance

Intended Word (Intercept) 2.0192
Utterances (Intercept) 2.4475
Corpora (Intercept) 0.0119

Data size N

Observations 18,389
Intended Word 3,364
Utterances 3,619
Corpora 7

Table 4.7: Logistic mixed-effects model: predicting segment errors in stressed poly-
syllabic words with syllable factors – syllable constituency and syllable position.

Table 4.7 summarises the findings of the above model. Indeed both factors,

syllable constituency and syllable position, are attenuated in stressed syllables. One

of the two contrasts of syllable constituency [Coda vs. Onset] is insignificant; the

other contrast [Nucleus vs. Onset] is only near-significant. Furthermore, one of the

two contrasts of syllable position [Final vs. (Medial, Initial)] is insignificant. One

explanation for such an attenuation is that there is a ceiling effect, such that the

strong perceptual salience of stressed syllables overshadows the relative perceptual

difference across syllable constituents and across syllable positions.

4.3.5.2 Monosyllabic words

The monosyllabic words were analysed in a mixed-effects logistic model with syllable

constituency and stress as fixed effects, and intended word, utterance, and corpora
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Fixed effects Estimate SE z p(> |z|)

(Intercept) −1.6967 0.1744 −9.729 < 2× 10−16∗∗∗

Syllable Constituency [Nucleus vs. Coda] −0.2649 0.0361 −7.338 2.17× 10−13∗∗∗

Syllable Constituency [Onset vs. Coda] −0.1594 0.0406 −3.924 8.71× 10−5∗∗∗

Stress [Unstressed vs. Stressed] −1.0064 0.0969 −10.388 < 2× 10−16∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Random effects Variance

Intended Word (Intercept) 1.656
Utterances (Intercept) 2.236
Corpora (Intercept) 0.187

Data size N

Observations 50,039
Intended Word 2,119
Utterances 4,286
Corpora 7

Table 4.8: Logistic mixed-effects model: predicting segment errors in stressed and
unstressed monosyllabic words with syllable factors – syllable constituency and stress.

as random intercepts. The model has the formula:

Segment Error ∼ Syllable Constituency + Syllable Position +

(1|Intended Word) + (1|Utterances) + (1|Corpora)

Table 4.8 summarises the mixed-effects model. Both syllable factors, syllable

constituency and stress, are significant. Stress has an unexpected effect, such that

a segment in an stressed syllable is more likely to be misheard than that in an

unstressed syllable, as indicated by the negative estimate. Both contrasts of syllable

constituency, [Nucleus vs. Coda] and [Onset vs. Coda], have a negative estimate,

which means a nucleus segment and an onset segment are less likely to be misheard

than a coda segment.

Firstly, the unexpected effect of stress has three potential explanations – a report-

ing bias in the naturalistic misperception corpora, the differing definitions of stress

for monosyllables and polysyllables, and a lexical frequency effect. Recall that un-

stressed monosyllabic words are essentially function words in our corpus (as defined

in Chapter 2, Section 2.2.3.2). Stressed monosyllabic words are therefore content
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words, and they carry more information than unstressed monosyllabic words. This

would mean misperceiving stressed monosyllabic words would disrupt communica-

tion more than misperceiving unstressed monosyllabic words, and therefore they are

noticed and reported more frequently by the reporters of the naturalistic corpora

(Browman, 1980). This is evident by the fact that in the naturalistic corpus, 543 out

of 4,861 instances are misperceptions of a single word, and 535 of which are content

words. Regarding the differing definitions of stress, a stressed syllable in a polysyl-

labic word is stressed relative to the other syllables in the same word. A stressed

syllable in a monosyllabic word, however, is stressed relative to other words in the

utterance (Browman, 1980). Finally, function words are of higher frequency than

content words, and it is possible that high frequency words are less prone to errors;

therefore, unstressed monosyllables were less erroneous than stressed monosyllables.

This frequency effect is in fact confirmed in Section 4.5.

Secondly, the syllable constituency has the following effect, Coda > [Onset, Nu-

cleus]. This is consistent with the findings from previous confusion experiments which

show that coda is more erroneous than onset (Wang and Bilger, 1973; Redford and

Diehl, 1999; Benkí, 2003) and that onset and nucleus are similarly less erroneous

than coda (Benkí, 2003). Recall that this effect is different from the one with the

polysyllabic words (Onset > [Nucleus, Coda]) but this is expected given that the

previous confusion experiments were all based on the results of monosyllabic stimuli.

Interestingly, the variance of Corpora is the smallest of all the random effects in

both mixed-effects models (Figure 4.7 and Figure 4.8). This indicates that there is

a high level of consistency across corpora.

4.3.6 Conclusion

In this section, three syllable factors were examined for their effects on segmental

errors in monosyllabic and polysyllabic words. The three factors were syllable con-
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stituency (onset, nucleus and coda), syllable position (word initial, medial and final),

and stress (stressed and unstressed).

The effect of syllable constituency in monosyllabic words is that coda segments

are more likely to be misperceived than onset segments and nucleus segments –

Coda > [Onset, Nucleus]. This is consistent with findings from previous confusion

experiments on CV, VC and CVC nonsense syllables. This pattern can be partially

explained in terms of acoustic differences between onset and coda (Redford and

Diehl, 1999), in which onset is found to be acoustically more distinctive than coda.

Regarding onset and nucleus having similar error rates, although Benkí’s (2003)

confusion data showed this pattern, no explanation was given.

Interestingly, the effect of syllable constituency is different with polysyllabic

words, such that the onset is more likely to be misperceived than the rime – On-

set > [Nucleus, Coda]. I argued that the mismatch is expected since the arguments

and data used to support the trend with monosyllabic words were almost all based

on monosyllables.

One partial explanation for this mismatch is that the true effect of syllable con-

stituency for both monosyllabic and polysyllabic words is Coda > [Onset, Nucleus]

and the mismatch is due to some of the nuclei and codas of the polysyllabic words

having additional cues, which lower their error rate to a level that is even lower than

the rate of their corresponding onset. Firstly, in polysyllabic words, the coda conso-

nant in initial and medial syllables could be followed by a sonorant onset (while the

coda consonant in final syllables could not), therefore getting additional transitional

cues from the sonorant on the right, and these additional transitional cues can lower

the error rate. Secondly, using a predictability account, the nucleus and the coda

consonants in all syllable positions are predictable using their preceding segments

to reduce the number of possible lexical candidates (cf. uniqueness point). This

increase in predictability should be greater for the coda than the nucleus because
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the coda comes after the nucleus in a syllable. Since the “true” (under this account)

effect is that the coda is more erroneous than the nucleus, this greater increase of

predictability for the coda would lower its high error rate.

The effect of syllable position was also confirmed, and it has the trend, Word

Initial > Word Medial > Word Final. Word initial syllables are more erroneous than

medial syllables, which in turn are more erroneous than final syllables. This can

be explained with the final lengthening effect (Lindblom, 1968; Turk and Shattuck-

Hufnagel, 2007) and/or the predictability effect (Luce, 1986a).

Both syllable constituency and syllable position effects are stronger when the syl-

lables are unstressed rather than stressed. I argued that this attenuation in stressed

syllables is due to a ceiling effect caused by the high perceptual salience of stressed

syllables overshadowing both the syllable constituency and syllable position effects.

Finally, the effect of stress is that unstressed syllables are more erroneous than

stressed syllables, which supports the idea that a stressed syllable is an “island of

reliability” (Pisoni, 1981). The pattern, however, showed that this is only true for

polysyllabic words, and not monosyllabic words. I argued that this difference is due

to a reporting bias in the naturalistic corpus, differing definitions of stress between

monosyllabic and polysyllabic words and/or a lexical frequency effect. Stressed mono-

syllabic words (basically content words) are more noticeable (and therefore reported

more often) when misperceived than unstressed monosyllabic words (function words).

A stressed syllable in a polysyllabic word is stressed relative to other unstressed syl-

lables in the word, but a stressed monosyllabic word is stressed relative to the other

words/syllables in the utterance. Unstressed monosyllabic words are mostly function

words which are of high frequency words, and high frequency words are less likely to

be misperceived.

To conclude, all three syllable factors had a definite effect on whether a segment

will be misperceived. This highlights the fact that factors on the syllable level have
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a top-down effect in naturalistic misperception.

4.4 Word frequency

This section examines the relationship between the frequency of the intended word

and that of the perceived word. In addition, the relationship between the frequency

of the intended segment and that of the perceived segment is also examined in order

to eliminate the possibility that the frequency relationship between words can be

reduced to the frequency relationship between segments. In other words, this is to

see if the relationship of word frequency is the additive result of a lower level of

frequency effect.

First, Section 4.4.1 examines the word frequency effect. Second, Section 4.4.2

examines the segmental frequency effect.

4.4.1 Word frequency

Let us start with the frequency relationship between words. Two questions are

examined. First, is there a relationship between the frequency of the intended

word and that of the perceived word, Freq.Perceived = f(Freq.Intended)? Second,

is the perceived word just as frequent as or more frequent than the intended word,

Freq.Perceived > or ≈ Freq.Intended (“>” means more than, and “≈” means similar

to)?

If there is a relationship (e.g. a correlation), then we need to account for the

fact that listeners can somehow estimate the frequency of the word that they were

expecting, even though the actual intended word was not perceived. This estimation

of the frequency of the intended word can be explained using the graceful degradation

account and its extension based on the correlation between lexical frequency and

duration (Vitevitch, 2002).
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Graceful degradation is the ability of a processing system to not break down in a

catastrophic way when the input is incomplete, but to output a representation that

best matches the input (McClelland, Rumelhart, and Hinton, 1986). In the context

of misperception, the perceptual system uses the information in the degraded signal

to retrieve a lexical item. One of the remaining cues of the intended word could be its

duration. It is based on the idea that high frequency words tend to be produced more

quickly than low frequency words which tend to be produced more slowly (Wright,

1979). So although listeners cannot retrieve the intended word, the listener can still

retrieve the duration of the intended word which can be used to derive the lexical

frequency (Vitevitch, 2002; Tang and Nevins, 2014).

Furthermore, should we find that the perceived word has a higher frequency than

the intended word, then the finding would support an account of ease of lexical

retrieval. High frequency words have a lower processing cost than low frequency

words and can be retrieved more quickly from the lexicon. When the intended word

cannot be retrieved, listeners can either a) do their best to estimate the intended

word (using its duration) and select words that can be retrieved more easily, or b)

simply select words that are generally easy to retrieve, i.e. high frequency words.

4.4.1.1 Freq.Perceived = f(Freq.Intended)

The first question is whether the frequency of the perceived word and that of the

intended word have a relationship. This was addressed in previous studies using natu-

ralistic and experimental data. Tang and Nevins (2014) conducted a similar analysis

with an earlier version of the combined naturalistic corpus, which was smaller. 2,171

pairs of intended and perceived words were extracted after removing those with zero

frequency and duplicates, and there was a positive correlation which is significant at

a moderate level (R = 0.33, df = 2,169, p < 0.002).

In experimental studies of misperception of English words, Pollack, Rubenstein,
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and Decker (1960) analysed word frequency of the intended words and the perceived

words and they did not find a significant correlation. The lack of correlation could be

due to the fact that the experiment tested only 144 words (which is a small sample),

and the fact that the 144 words were repeatedly tested could prime the choice of the

perceived words (i.e. there is a higher chance of selecting a test word as a perceived

(though incorrect) word (Felty et al., 2013)). In another study, Felty et al. (2013)

conducted a large word confusion experiment. 1,428 words which were randomly

sampled from the English lexicon were presented in isolation with noise added to the

signal. The authors found that there was a positive correlation which is significant

at a moderate level (R = 0.154, df = 21,842, p < 0.0001) between the intended and

perceived words. The fact that this result contradicts that of Pollack, Rubenstein,

and Decker (1960) suggests that there is a subtle frequency relationship which can

only be found with a larger sample.

Could the positive correlation simply be the results of confounds? Two potential

confounds are identified and discussed below. The first one concerns word pairs

of different lengths. Firstly, the number of syllables is usually preserved in word

confusions (which constitutes 74% of the word confusion errors in Felty et al. (2013)).

Therefore, long words are misperceived as long words, and short words as short words.

Secondly, longer words are less frequent than shorter words. Together this means

that by considering word pairs that contain words of different lengths together, a

positive correlation will naturally emerge, even though there could be no (or even

negative) correlation with words of the same length. For instance, the monosyllabic

word pairs have a zero correlation, and the polysyllabic word pairs also have a zero

correlation; but since monosyllabic words are more frequent than polysyllabic words,

there will be a positive correlation when considering monosyllabic and polysyllabic

word pairs together.

This would in fact explain the lack of correlation in Pollack, Rubenstein, and
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Decker (1960) which only tested monosyllabic words. However, Felty et al. (2013)

also tested the correlation with only monosyllabic word pairs, and a weak but signif-

icant correlation was still found (R = 0.108, df = 6,546, p < 0.0001). The fact that

the correlation value dropped after controlling for the number of syllables showed

that this confound is valid but nevertheless cannot fully explain all the variance. In

fact, this was not controlled for in Tang and Nevins (2014), which could contribute

to the significant correlation.

Another potential confound is to do with the number of identical word pairs.

It is possible that a specific word is confused more often with another word; for

instance, in the naturalistic data, the Labov corpus contained five instances of copy

being perceived as coffee. The inclusion of these duplicate word pairs could skew the

correlation if we treat the duplicates as independent data points. Tang and Nevins

(2014) controlled for this by removing any duplicates, and it is not clear whether this

was controlled for in Pollack, Rubenstein, and Decker (1960) and Felty et al. (2013).

In sum, the findings from both naturalistic and experimental data suggest that

the frequency relationship between the intended and perceived words is stronger in

naturalistic settings than in experimental settings. Furthermore, with the experimen-

tal data, the strength of the relationship appears to be dependent on experimental

procedures, such as the number of stimuli and whether the stimuli were presented

repeatedly. However, there are potential confounds that were not controlled for in

some or all of the studies mentioned above, casting doubt on the validity of the

findings.

4.4.1.2 Freq.Perceived > or ≈ Freq.Intended

The second question concerns the nature of the frequency relationship between the

intended and perceived words. This was addressed by previous studies using natu-

ralistic and experimental data.
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In naturalistic misperception, Bond (1999, p. 103) randomly sampled 75 pairs of

word confusions from the author’s own corpus (the Bond corpus) that have relatively

simple errors and do not contain proper names. It was found that of the 75 pairs,

the perceived word was more frequent than the intended word in 36 pairs, and the

reverse is true in the remaining 39 pairs. This difference is not statistically significant

under a chi-squared test (χ2 = 0.12, df = 1, p-value = 0.729).

In another study of naturalistic misperception, Cutler and Butterfield (1992) con-

ducted frequency analyses of word confusions that are involved in juncture misper-

ception, using data from the Bond corpus as well as the author’s own unpublished

corpus. Juncture misperception is when a word boundary is inserted or deleted,

which results in one word being perceived as multiple words and multiple words

being perceived as one. Starting with 246 instances of juncture misperception, 165

instances were left after removing those containing proper names or only grammati-

cal words. The authors found that the perceived word was more frequent than the

intended word in 81 pairs, and the reverse is true in the remaining 84 pairs; this

difference is not significant (χ2 = 0.0545, df = 1, p-value = 0.8153).

Vitevitch (2002) re-examined this question using the Bond corpus, with a different

kind of statistical analysis. The author excluded word pairs that contain complex

errors. These word pairs are those with extensive mismatches as well as those which

are due to juncture errors (one word is perceived as two words, and vice-versa).

Furthermore, certain word pairs were excluded if the lexical variables that the author

investigated (one of which is word frequency) were not available. 88 word pairs were

left for analyses. An ANOVA (which is identical to an unpaired t-test) was performed

using word frequency as the dependent variable and no significant differences were

found. The lack of a difference would therefore imply that the intended and perceived

words are similarly frequent, and that the perceived words are not more frequent than

the intended word.
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Finally, Tang and Nevins (2014) (previously mentioned) performed a similar fre-

quency analysis. Out of the 2,171 word pairs, the number of pairs with Freq.Perceived >

Freq.Intended is 1,072. In the other direction, the number of pairs with Freq.Intended >

Freq.Perceived is 1,099. A chi-squared test yielded χ2 = 0.3358, df = 1, p-value =

0.5623, which is statistically insignificant.

Let us move on to experimental misperception. Felty et al. (2013) (previously

mentioned) also analysed whether the frequency of the perceived word was signifi-

cantly different from the frequency of the intended word in word confusions. It was

found that the perceived words have a higher frequency than their intended words.

To assess the statistical significance, instead of using the chi-squared test or t-test,

a Monte Carlo simulation was done – for each word pair, the perceived word is ran-

domly replaced with a word that has the same number of segmental differences from

the intended word as the perceived word. 10,000 simulations of the word pairs were

performed, and the frequency of the intended word and the fake perceived word was

computed across all pairs for each simulation. They found that all 10,000 simulations

have a mean difference (the perceived frequency minus the intended frequency) that

is lower than the original mean difference, which suggests that the mean difference

with the actual word pairs is significant.

Could these findings be explained by confounds? Three confounds are identified

and discussed below. The first confound concerns duplicated pairs of word confusions,

as they could skew the difference in either direction with the perceived/intended

word being more frequent, and could average out any potential differences. This was

controlled for in Vitevitch (2002) and Tang and Nevins (2014), but it is not clear if

this was controlled for in Bond (1999, p. 103), Cutler and Butterfield (1992) and

Felty et al. (2013).

The second potential confound concerns using word confusions that are involved

in juncture misperception. Given that a juncture misperception involves perceiving
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one word as multiple words and vice-versa, it is not clear from Cutler and Butterfield

(1992) which one of the multiple words was chosen as the word for the frequency

analysis. For instance, how big is it? was perceived as how bigoted. Do we take the

frequency of big, is or it, to compare with that of bigoted? Given that the authors

filtered out instances containing only grammatical words, it is likely that they chose

the frequency of the content word, but what if there is more than one content word?

The third confound concerns using word confusions in which the intended word

and perceived word are of different length (syllables or segments). Longer words tend

to be less frequent than shorter words; therefore, whichever word (intended/perceived)

is longer in a given pair of words, the frequency will be lower for that word. Say

that on average the perceived words have fewer syllables than the intended words,

then naturally the frequency of the perceived word will be higher than the frequency

of the intended word. In fact, this could explain the findings by Felty et al. (2013).

They found that the perceived words largely have the same number of segments and

syllables as the intended words, but there is a tendency for the perceived word to be

shorter (fewer segments and syllables). The fact that they found that the perceived

word are more frequent can be explained by this confound. This was controlled for

in Vitevitch (2002) in terms of the number of syllables, but not in Tang and Nevins

(2014). It is not clear if it was controlled for in Bond (1999, p. 103) and Cutler and

Butterfield (1992).

In sum, these findings from multiple studies of naturalistic misperception suggest

that the frequency of the perceived word is not significantly different from that of

the intended word in word confusions, i.e. they are similarly frequent. This finding

is robust across the size of the sample (N = 75 – 2,171) as well as statistical methods

(Chi-squared or ANOVA). Although on the surface the experimental findings con-

tradict with naturalistic findings, the significant difference in the experimental data

is perhaps confounded by the difference in word length. Again there are potential
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confounds that were not controlled for in some or all of the studies mentioned above,

casting doubt on the validity of the findings.

Given the potential confounds, the current analysis will re-examine the two ques-

tions while controlling for the confounds mentioned above as well as using both

large and small samples of naturalistic data. To recap, the first question is whether

there is a relationship between the intended and perceived word, Freq.Perceived =

f(Freq.Intended), and the second question is whether the perceived word is more

frequent than or similarly frequent to the intended word, Freq.Perceived > or ≈

Freq.Intended. Crucially, it is possible that there is not a relationship, Freq.Perceived ̸=

f(Freq.Intended), and yet the frequency of the perceived word is still higher than the

frequency of the intended word. This is the case when the perceived words are gen-

erally highly frequent, regardless of the frequency of the intended words. In the next

section, I will outline the method that was used by this analysis, including the steps

for evaluating the potential confounds.

4.4.1.3 Method

Using the segmental confusion data described in Chapter 3, Section 3.2, 8,259 pairs

of word confusions were extracted.

Recall that the word pairs that are involved in juncture misperception can intro-

duce complications when choosing a word pair (e.g. big is it > bigoted? ). Therefore,

we removed these many-to-one and one-to-many word confusion pairs, which left us

with 4,268 pairs of one-to-one word confusions.

As mentioned in Section Chapter 2, 2.1.2.1, proper names are known to behave

differently from non-proper names during lexical retrieval (Valentine, Brennen, and

Brédart, 1996); therefore, all word confusions that involved proper names were re-

moved. This left us with 3,244 pairs.

The token frequencies of the words found in these 3,244 pairs were extracted
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from a control written English corpus as described in Chapter 2, Section 2.3. After

removing the pairs containing zero frequency (i.e. not found in the corpus), 3,135

pairs remained. The token frequency was log10-transformed.

To examine the robustness of the findings, we performed our analysis repeatedly

on multiple subsets of the data. The factors that are used to subset the 3,135 pairs

are described below. The first factor is the choice of corpora. This is to examine if

the findings are affected by certain subcorpora, since they differ in terms of collection

locations, collectors’ biases and sample sizes. The combined corpus, as well as the

subcorpora, were considered individually (the subcorpora are described in Chapter

2, Section 2.1). The Bond corpus was divided into two, the adult misperception

corpus and the children misperception corpus. The Nevins corpus was also divided

into two, the data that were collected in 2009 and those collected in 2010. There-

fore, together there are eight subsets (one combined corpus, and seven subcorpora),

which are the Combined corpus, Browman (1978), Bird (1998), Labov (2010), Bond

(Adult) (1999), Bond (Children) (1999), Nevins (2009) and Nevins (2010). The sec-

ond factor is whether or not to remove duplicated word pairs. This created two

subsets, those with duplicates and those without duplicates. The third factor is the

removal of the word pairs with a different number of syllables. Two subsets were

created, those with and without these pairs. The fourth factor concerns the number

of syllables of the word pairs with matching number of syllables. Three subsets were

created, the monosyllabic word pairs, the polysyllabic word pairs and those with

both monosyllabic and polysyllabic word pairs.

All possible subsets of the word pairs based on these factors were tested. Should

the findings be found consistently across all/most subsets then we can be doubly

sure that the findings are not skewed by some or all of these factors.

Correlation analyses were performed for the question of whether the frequency

of the intended word correlates with the frequency of the perceived word. A non-
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parametric correlation, Spearman (two-tailed), was used to compare the two sets of

frequencies, since the two sets of frequency values are not normally distributed.

Paired t-tests were performed for the question of whether the frequency of the

perceived word is higher than or similar to the frequency of the intended word for a

given substitution. Since the difference between two frequency values is not normally

distributed, the p-values are calculated via 10,000 permutations.

4.4.1.4 Analyses

4.4.1.4.1 Freq.Perceived = f(Freq.Intended) Table 4.9 summarises the correlation

analyses with all eight subsets of corpora, with and without duplicates. The size of

the samples is shown in the columns with the header N. The correlation values are

under the headers ρ with the level of statistical significance denoted as superscripts.

Overall, we see that all the correlation values are positive, ranging from 0.52 to

0.76, and they are highly significant (p < 0.001). This clearly indicates that there

is a strong and significant relationship between the frequency of the intended word

and that of the perceived word in word confusions. The correlation is robust across

subsets of corpora, even when the sample size is small (which is the case with the

Bond (Children) corpus, N = 55 or 56). It is also robust with and without dupli-

cates, which is seen by the correlation values only dropping slightly after removing

duplicates.

By visualising the correlations, we can get a better idea of the relationship and

whether they are skewed by outliers. The correlations of the seven subcorpora with

duplicates (excluding the combined corpus) are shown as scatterplots, each fitted

with a regression line in Figure 4.13. From the figure, a strong relationship can be

seen across all subcorpora, and they do not appear to be skewed/biased by extreme

outliers. This indicates that the correlation values are valid.

However, the positive correlation could be due to the fact that we included both
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With Duplicates Without Duplicates

Corpus N ρ N ρ

Combined Corpus 3,135 0.6173∗∗∗ 2,861 0.5767∗∗∗
Browman (1978) 129 0.5251∗∗∗ 129 0.5251∗∗∗
Bird (1998) 259 0.7580∗∗∗ 254 0.7466∗∗∗
Labov (2010) 592 0.5806∗∗∗ 546 0.5798∗∗∗
Bond (Adult) (1999) 448 0.5380∗∗∗ 440 0.5274∗∗∗
Bond (Children) (1999) 56 0.6011∗∗∗ 55 0.5949∗∗∗
Nevins (2009) 811 0.6689∗∗∗ 765 0.6364∗∗∗
Nevins (2010) 840 0.5703∗∗∗ 815 0.5615∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.9: Correlations between the frequency of the intended word and the perceived
word in word confusions, across corpora, with and without duplicates: the N columns
contain the sample size and the ρ columns contain the correlation values; the superscript
symbols denote the level of statistical significance.

polysyllabic word pairs and monosyllabic word pairs. Furthermore, it could be an

artefact of some word pairs having a different number of syllables between the in-

tended and the perceived words. For these reasons, we excluded the word pairs that

have a different number of syllables. We then subdivided the remaining word pairs

by whether they are monosyllabic or polysyllabic. We repeat this set of analyses

across corpora, with and without duplicates. The correlation results, with and with-

out duplicates, are summarised in Table 4.10 and Table 4.11 respectively. Each table

shows the correlation values varied across corpora (vertically) and across subsets of

syllable size (horizontally). From the left, the column Mono. + Poly. contains the

correlations with both monosyllablic and polysyllablic word pairs, and the two on the

right, Mono. and Poly., contain the correlations with monosyllabic and polysyllabic

word pairs respectively.

First of all, we examine the effect of removing pairs with a different number of

syllables between the intended and the perceived words. By comparing the third

column of Table 4.9 and the third column of Table 4.10, we see that the correlation

values increased (though only slightly) after removing these pairs. This increase

400



Browman (1978) Bird (1998) Labov (2010)

Bond (Adult) (1999) Bond (Children) (1999) Nevins (2009)

Nevins (2010)

0

2

4

6

0

2

4

6

0

2

4

6

0 2 4 6
Intended Lexical Frequency 

 (Log10-transformed)

Pe
rc

ei
ve

d 
Le

xi
ca

l F
re

qu
en

cy
 (L

og
10

-tr
an

sf
or

m
ed

)

Figure 4.13: The relationship between the frequency of the intended word and the
frequency of the perceived word in word confusions with duplicates, divided by corpora

is expected because these pairs have a different number of syllables, and therefore

will have a larger difference in frequency. This increase is also true after removing

duplicates; this can be seen by comparing the fifth column of Table 4.9 and the third

column of Table 4.11.

Second, a comparison between Table 4.10 and Table 4.11, which differ in terms of

whether the duplicates were removed, shows again that removing duplicates makes

nearly no difference to the findings, as it only slightly lowered the correlation values.
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Mono. + Poly. Mono. Poly.

Corpus N ρ N ρ N ρ

Combined Corpus 2,668 0.6465∗∗∗ 1,867 0.6318∗∗∗ 801 0.3318∗∗∗
Browman (1978) 103 0.5593∗∗∗ 60 0.4533∗∗∗ 43 0.3934∗∗
Bird (1998) 223 0.7587∗∗∗ 164 0.7082∗∗∗ 59 0.5171∗∗∗
Labov (2010) 516 0.6094∗∗∗ 366 0.6177∗∗∗ 150 0.3094∗∗∗
Bond (Adult) (1999) 376 0.5962∗∗∗ 252 0.5917∗∗∗ 124 0.3134∗∗∗
Bond (Children) (1999) 51 0.5720∗∗∗ 31 0.5471∗∗ 20 0.3729n.s.
Nevins (2009) 702 0.6973∗∗∗ 509 0.6771∗∗∗ 193 0.3691∗∗∗
Nevins (2010) 697 0.5978∗∗∗ 485 0.5590∗∗∗ 212 0.2646∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.10: Correlations between the frequency of the intended word and the per-
ceived word in word confusions with duplicates, subsetted by corpora and monosyllab-
icity: the N columns contain the sample size and the ρ columns contain the correlation
values; the superscript symbols denote the level of statistical significance.

Therefore, we will not examine Table 4.11 any further.

Third, focusing on Table 4.10, we see that all but one correlation were significant.

The insignificant correlation is the subset with the polysyllabic word pairs and Bond

(Children) (1999) corpus which is likely due to its small sample size (N = 20). The

correlations with only the monosyllabic word pairs are similarly stronger (ρ = 0.45

– 0.7) than those with both monosyllabic and polysyllabic words (ρ = 0.55 – 0.75).

This agrees with Felty et al.’s (2013) findings which showed that there is a significant

correlation with monosyllabic word pairs, and that the positive correlation is not

merely an artefact of mixing both monosyllabic and polysyllabic word pairs. While

there is a modest correlation with polysyllabic word pairs, their correlation values

(ρ = 0.3 – 0.51) were nearly half as low as those with the monosyllabic word pairs

(ρ = 0.55 – 0.75). This can be clearly seen in a visualisation of the correlations

in Figure 4.14. The figure is divided into seven scatterplots (one for each corpus).

Each scatterplot has two sets of points, one for monosyllables and the other for

polysyllables, each fitted with a regression line. The difference between monosyllables

and polysyllables is apparent, since the slope of the lines with the polysyllables is
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Mono. + Poly. Mono. Poly.

Corpus N ρ N ρ N ρ

Combined Corpus 2,409 0.6020∗∗∗ 1,634 0.5759∗∗∗ 775 0.3180∗∗∗
Browman (1978) 103 0.5593∗∗∗ 60 0.4533∗∗∗ 43 0.3934∗∗
Bird (1998) 218 0.7460∗∗∗ 159 0.6902∗∗∗ 59 0.5171∗∗∗
Labov (2010) 477 0.6026∗∗∗ 337 0.6166∗∗∗ 140 0.2532∗∗
Bond (Adult) (1999) 368 0.5863∗∗∗ 244 0.5811∗∗∗ 124 0.3134∗∗∗
Bond (Children) (1999) 50 0.5650∗∗∗ 30 0.5257∗∗ 20 0.3729n.s.
Nevins (2009) 656 0.6647∗∗∗ 468 0.6393∗∗∗ 188 0.3610∗∗∗
Nevins (2010) 673 0.5882∗∗∗ 465 0.5440∗∗∗ 208 0.2731∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.11: Correlations between the frequency of the intended word and the per-
ceived word in word confusions without duplicates, subsetted by corpora and mono-
syllabicity: the columns N contains sample size and the columns ρ contains the cor-
relation values for each subset; the superscript symbols denote the level of statistical
significance.

consistently flatter than that of the lines with the monosyllables. One explanation for

this difference between monosyllabic and polysyllabic words is that the word length

of the intended and perceived words was only partially controlled by matching the

number of syllables, but not the number of segments. Assuming that on average each

monosyllable is longer/shorter than another monosyllable by x number of segments,

a polysyllabic word pair is likely to have a difference in word length of x times the

number of syllables. Therefore, the difference in the number of segments between

monosyllabic word pairs is likely to be smaller than that between polysyllabic word

pairs. In any case, the overall relationship remains robust after dividing the pairs

into monosyllables and polysyllables.

In sum, we found that there is a strong and significant correlation between the

frequency of the intended word and the frequency of the perceived word in word

confusions. This correlation is robust regardless of the choice of the corpus, the

shape of the word (monosyllabicity), the removal of duplicates and the removal of

pairs with a different number of syllables.
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Figure 4.14: The relationship between the frequency of the intended word and the
frequency of the perceived word in word confusions, with duplicates, divided by corpora
and monosyllabicity

4.4.1.4.2 Freq.Perceived > or ≈ Freq.Intended This section examines the question

of whether the frequency of the perceived word is higher than or similarly to that of

the intended word in word confusions. Paired t-tests were performed for the same

subsets of the word pairs as shown in the previous section.

Table 4.12 summarises the results of the paired t-tests with all eight subsets

of corpora, with and without duplicates. The size of the samples is shown in the
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columns with the header N. The t-values are under the headers t with the level of

statistical significance denoted as superscripts as well as shown in full between the

brackets. A positive t-value indicates that the frequency of the perceived word is

higher than that of the intended word, and a negative t-value indicates the reverse.

The bold t-values are the statistically significant ones.

Focusing on the third column (with duplicates), there is a tendency for the per-

ceived word to be more frequent in a word confusion (t = 0.9894) in the combined

corpus; however, it is not significant (p = 0.1594). Could it be that a subset of

the data has a tendency in the opposite direction, thus averaging out the difference?

To tackle this question, we examine each of the subcorpora. In fact, it is true that

the difference is being averaged out, since the t-values of the seven subcorpora have

inconsistent signs. The t-values of four subcorpora were positive, and they are Brow-

man (1987), Bird (1998), Labov (2010) and Bond (Adult) (1999); all except the Bond

corpus were significant. The t-values are negative for the remaining three, and they

are Bond (Children) (1999), Nevins (2009) and Nevins (2010); only Nevins (2010)

was significant. It is clear that the insignificance in regard to the combined corpus

is due to the Nevins (2010) corpus and perhaps the Nevins (2009) corpus averaging

out the positive t-values from the other corpora; since they are both relatively large,

they therefore have a bigger effect on the combined corpus. These patterns remain

the same without duplicates, as shown in the fifth column.

Furthermore, just as the correlation analyses, we analyse the effect of removing

pairs that have a different number of syllables and the effect of dividing the pairs into

monosyllables and polysyllables. The t-test results (subsetted by monosyllabicity

and corpora), with and without duplicates, are summarised in Table 4.13 and Table

4.14 respectively.

First of all, we examine the effect of removing pairs with a different number of

syllables between the intended and the perceived words. By comparing the third
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With Duplicates Without Duplicates

Corpus N t N t

Combined Corpus 3,135 0.9894n.s.
(p=0.1594) 2,861 0.6172n.s.

(p=0.2689)

Browman (1978) 129 2.5299∗∗

(p=0.0071) 129 2.5299∗∗

(p=0.0071)

Bird (1998) 259 2.2367∗

(p=0.0124) 254 2.225∗

(p=0.0139)

Labov (2010) 592 2.8826∗∗

(p=0.0022) 546 2.5977∗∗

(p=0.0047)

Bond (Adult) (1999) 448 0.5081n.s.
(p=0.3023) 440 0.4512n.s.

(p=0.3217)

Bond (Children) (1999) 56 -0.35n.s.
(p=0.3630) 55 -0.3628n.s.

(p=0.3594)

Nevins (2009) 811 -0.8262n.s.
(p=0.2072) 765 -0.8325n.s.

(p=0.2060)

Nevins (2010) 840 -2.0081∗

(p=0.0215) 815 -2.1356∗

(p=0.0164)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.12: Paired t-tests (one-tailed) on the frequency of the intended and perceived
words, with and without duplicates and subsetted by corpora: the N columns contain
the sample size and the t columns contain the t-values; the level of statistical signifi-
cance is denoted by the superscript symbols and the p-values are shown between the
brackets; the bold values are the significant t-values.

column of Table 4.12 and the third column of Table 4.13, we see that the t-values

decreased after removing these pairs for most of the corpora, except Bird (1998)

and Nevins (2009). This decrease suggests that amongst the word pairs that have a

different number of syllables there were more word pairs which have fewer syllables in

the perceived word (than the intended word) than those which have more syllables in

the perceived word. Nonetheless, the sign of all the t-values and the corpora, which

have significant t-values, remained the same. This decrease is also true after removing

duplicates, and it is big enough to change the sign of t-test with the combined corpus

from positive to negative; this can be seen by comparing the fifth column of Table
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Mono. + Poly. Mono. Poly.

Corpus N t N t N t

Combined Corpus 2668 0.2723n.s.
(p=0.3956) 1867 0.4297n.s.

(p=0.3319) 801 -0.1192n.s.
(p=0.4521)

Browman (1978) 103 1.7318∗

(p=0.0429) 60 0.8733n.s.
(p=0.1966) 43 1.7102∗

(p=0.0486)

Bird (1998) 223 2.458∗∗

(p=0.0076) 164 1.5466+
(p=0.0585) 59 2.0835∗

(p=0.0201)

Labov (2010) 516 2.1364∗

(p=0.0159) 366 0.9591n.s.
(p=0.1695) 150 2.3743∗∗

(p=0.0092)

Bond (Adult) (1999) 376 0.1104n.s.
(p=0.4573) 252 0.4062n.s.

(p=0.3413) 124 -0.3415n.s.
(p=0.3676)

Bond (Children) (1999) 51 -0.5403n.s.
(p=0.2971) 31 0.1427n.s.

(p=0.4446) 20 -0.9683n.s.
(p=0.1726)

Nevins (2009) 702 -0.5292n.s.
(p=0.2980) 509 -0.0148n.s.

(p=0.4947) 193 -0.8767n.s.
(p=0.1921)

Nevins (2010) 697 -2.5034∗∗

(p=0.0071) 485 -1.4346+
(p=0.075) 212 -2.2463∗

(p=0.0137)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.13: Paired t-tests (one-tailed) on the frequency of the intended and perceived
words, with duplicates, subsetted by corpora and monosyllabicity: the N columns
contain the sample size and the t columns contain the t-values; the level of statistical
significance is denoted by the superscript symbols and the p-values are shown between
the brackets; the bold values are the significant t-values.

4.12 and the third column of Table 4.14.

Second, a comparison between Table 4.13 and Table 4.14, which differ in terms of

whether the duplicates were removed, shows again that removing duplicates makes

nearly no difference to the findings. The most striking effect is that the t-value of the

subset with the monosyllabic word pairs and the combined corpus is reduced from

0.4297 to near zero. Given the small difference, we will not examine Table 4.14 any

further.

Third, focusing on Table 4.13, most of the t-values with the monosyllabic word

pairs (the fifth column) and those with the polysyllabic word pairs (the seventh col-
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Mono. + Poly. Mono. Poly.

Corpus N t N t N t

Combined Corpus 2,409 -0.1227n.s.
(p=0.4532) 1,634 7× 10−4 n.s.

(p=0.4998) 775 -0.2028n.s.
(p=0.4186)

Browman (1978) 103 1.7318∗

(p=0.0411) 60 0.8733n.s.
(p=0.1966) 43 1.7102∗

(p=0.0486)

Bird (1998) 218 2.4459∗∗

(p=0.0075) 159 1.5308+
(p=0.0625) 59 2.0835∗

(p=0.0201)

Labov (2010) 477 1.9388∗

(p=0.02605) 337 0.827n.s.
(p=0.2096) 140 2.1899∗

(p=0.0141)

Bond (Adult) (1999) 368 0.0467n.s.
(p=0.4815) 244 0.3259n.s.

(p=0.3762) 124 -0.3415
(p=0.3666)

Bond (Children) (1999) 50 -0.5537n.s.
(p=0.293) 30 0.1247n.s.

(p=0.4493) 20 -0.9683n.s.
(p=0.1724)

Nevins (2009) 656 -0.5343n.s.
(p=0.2964) 468 -0.0702n.s.

(p=0.4711) 188 -0.8047n.s.
(p=0.2144)

Nevins (2010) 673 -2.6324∗∗

(p=0.0044) 465 -1.5905+
(p=0.0556) 208 -2.2519∗

(p=0.0114)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.14: Paired t-tests (one-tailed) on the frequency of the intended and perceived
words, without duplicates, subsetted by corpora and monosyllabicity: the N columns
contain the sample size and the t columns contain the t-values; the level of statistical
significance is denoted by the superscript symbols and the p-values are shown between
the brackets; the bold values are the significant t-values.

umn) have similar signs to those with both the monosyllabic and polysyllabic word

pairs (the third column). However, the significant t-values with both the mono-

syllabic and polysyllabic word pairs are significant only with the polysyllabic word

pairs, and not the monosyllabic word pairs. This suggests that the overall pattern

is dependent mostly on polysyllabic word pairs.

In sum, we found that the difference between the frequency of the intended word

and that of the perceived word is inconsistent across corpora. The significant negative

t-values with the Nevins (2010) corpus were unexpected, given that previous findings

found either a null difference or a positive difference (with the perceived word being

more frequent). It is not clear why Nevins (2010) and Nevins (2009) have a negative
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difference, while the other corpora have a positive difference. This inconsistency

suggests that the difference (positive or negative) is not robust; therefore, it is not

the case that listeners would choose a higher frequency word in word confusions, but

instead they would choose a similarly frequent word.

4.4.1.5 Conclusion

This section examined the two aspects of the frequency relationship between the

intended and perceived words.

Firstly, we found that there is a strong and significant relationship between the

frequency of the intended word and that of the perceived word – Freq.Perceived =

f(Freq.Intended), as found in the correlation analyses. This is consistent with the

large-scaled experimental confusion study by Felty et al. (2013), which also found

a statistically significant correlation. Interestingly, the strength of the correlation

is nearly twice as strong in our naturalistic data than the Felty et al.’s (2013) ex-

perimental data. Since Felty et al.’s (2013) study tested single words which were

presented in isolation, and the naturalistic data were based on words in sentences,

one might expect the frequency relationship to be stronger in Felty et al.’s (2013)

study than ours. One possible explanation is that the experiment was unnatural,

since in our everyday life we do not listen to words in isolation. This unnaturalness

of the experiment might therefore attenuate the strength of frequency effect.

Furthermore, the polysyllabic words had weaker (but significant) correlations

than the monosyllabic words, for which I have no concrete explanation. One expla-

nation is that the difference in the number of segments between monosyllabic word

pairs is likely to be smaller than that between polysyllabic word pairs, because the

word length of the intended and perceived words was not matched by the number of

segments.

In any case, having controlled for potential confounds, such as the choice of the
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corpus, the shape of the word (monosyllabicity), the removal of duplicates and the

removal of pairs with a different number of syllables, this correlation remains robust.

Secondly, we found that overall the frequency of the perceived word and the

frequency of the intended word are not significantly different, which suggests that

they are similar – Freq.Perceived ≈ Freq.Intended. By subsetting the naturalistic

corpus, in some of the subcorpora the perceived word was found to be significantly

higher than the intended word, while in the rest of the subcorpora the direction was

either reversed or insignificant. This contradicts Felty et al.’s (2013) findings that

the perceived word is more frequent; however, Felty et al.’s (2013) finding could be

the result of a word length confound. They found that the perceived word was on

average shorter, with fewer segments and syllables, than the intended word. Given

the inverse relationship between length and frequency, this naturally means that the

perceived word will be more frequent. A conservative conclusion is that listeners do

not simply retrieve a more frequent word.

To conclude, the findings in this section suggest that when the signal is degraded

listeners would estimate the intended word with the remaining cues in the signal, such

as the duration of the word. Given the relationship between frequency and duration

(Wright, 1979), the resultant perceived word is therefore of a similar frequency to

the intended word. Listeners do not simply retrieve an easier/more frequent word,

which suggests that we should reject an ease of retrieval account.

To eliminate the possibility of this word frequency effect being the result of a

segmental frequency effect, the same analyses are conducted for segments and are

presented below.

4.4.2 Segmental frequency

Two questions are examined. Does the segmental frequency of the intended seg-

ment have a relationship with the segmental frequency of the perceived segment,
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i.e. Freq.Perceived = f(Freq.Intended)? Is the frequency of the perceived segment

similar to or higher than that of the intended segment, i.e. Freq.Perceived > or ≈

Freq.Intended?

Besides these two key questions, the strength of these patterns is examined be-

tween consonants and vowels, and between the three frequency measures (token

frequency, type frequency and weighted type frequency) as described in Section 4.2.

Three common frequency measures are examined to rule out the possibility that the

strength of the relationship is strongly dependent on the chosen measure. Should we

find that the segmental frequency relationship is weak (even with the best frequency

measure ) compared to the word frequency relationship, then it would suggest that

the word frequency effect is not a by-product of the segmental frequency effect.

4.4.2.1 Method

Given that we are interested in the frequency relationship between the intended and

the perceived segments in a substitution, only substitution errors are considered;

and the correctly perceived segments, as well as insertion and deletion errors, were

ignored. This left us with 3,329 substitution errors with the vowels, and 4,789 substi-

tution errors with the consonants. The segmental frequency of the consonants and

the vowels in the language was computed for the intended segments and perceived

segments of these substitution errors.

Correlation analyses were performed for the question of whether the frequency of

the intended segment is correlated with the frequency of the perceived segment. A

non-parametric correlation, Spearman (two-tailed), was used to compare the two sets

of frequencies, since the two sets of frequency values are not normally distributed.

Paired t-tests were performed for the question of whether the frequency of the

perceived segment is higher than or similar to the frequency of the intended segment

for a given substitution. Since the difference between two frequency values is not
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normally distributed, the p-values were calculated via permutations. This is done

with the following steps with 10,000 permutations (N = 10,000).

1. The t-value from the observed data is first calculated.

2. The data is then shuffled and a corresponding t-value is calculated.

3. The last step is repeated N times.

4. The p-value is the proportion of the absolute t-values from the shuffled data

that are greater than the t-value from the observed data.

4.4.2.2 Analyses

4.4.2.2.1 Freq.Perceived = f(Freq.Intended) Table 4.15 summarises the correlation

analyses for consonants and vowels, testing the relationship between the frequency

of the intended segments and that of the perceived segments. The table shows the

correlation values with their respective levels of statistical significance (as indicated

by the superscripts).

Unfiltered Filtered

Frequency Measure Consonants Vowels Consonants Vowels

Token 0.1631∗∗∗ 0.0026n.s. 0.1546∗∗∗ 0.0026n.s.
Type 0.2032∗∗∗ 0.1025∗∗∗ 0.2029∗∗∗ 0.1025∗∗∗

Type (Weighted) 0.1868∗∗∗ 0.1109∗∗∗ 0.1831∗∗∗ 0.1109∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.15: Segmental frequency correlations (Spearman, two-tailed) of consonants
between the intended and perceived segments with three frequency measures: the su-
perscript symbols denote the level of statistical significance; the bold value in each
column is the best correlation amongst the three frequency measures.

First, we focus on the consonant correlations. In the second column, we can see

that the correlation ranges from 0.16 to 0.20 across the three frequency measures,

all of which are highly significant. Both measures of type frequency yield better
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correlations than token frequency. Furthermore, we find the unweighted type fre-

quency yields a better correlation than the weighted measure. Both of these findings

are expected, since previous studies claimed that pattern strength in the lexicon is

determined by type frequency and not token frequency (Bybee, 1995; Albright and

Hayes, 2003; Hay, Pierrehumbert, and Beckman, 2004). While the correlations are

significant, their strength is modest (0.1 to 0.3).

By visualising the correlations, we can have a better idea about the nature of the

relationship. These three correlations are visualised as scatterplots, each fitted with a

linear regression line with confidence intervals in Figure 4.15. It is immediately clear

that all three plots have clear outliers at low frequency values. These outliers could

inflate the correlation values. This is resolved by filtering these outliers by excluding

any values that have a frequency value above or below 3 standard deviations from the

mean frequency value. These filtered correlations are visualised in Figure 4.16. The

gradients of the line of best fit appears to be unaffected by the filtering step. This is

confirmed by their respective correlation values and levels of statistical significance

as shown in the fourth column of Table 4.15. The filtered correlation values are only

marginally smaller than the unfiltered ones. Together, the modest correlations (with

or without extreme values) and scatterplots suggest that there is a weak relationship

between the frequency of the intended segment and that of the perceived segment in

substitution errors of consonants.

Moving on to the vowel substitutions, we visualise the relationship, as shown

in Figure 4.17. It is clear that the slopes are flatter than those of the consonant

substitutions. The slope of the token frequency is almost entirely flat, suggesting

a zero correlation (i.e. no relationship). These observations are indeed confirmed

in the correlations in the third column of Table 4.15. It is worth noting that the

filtering step did not filter any values for vowels; therefore, the fifth column in the

table is identical to the third column. Again we found that the two measures of
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Figure 4.15: The relationship between the intended frequencies and the perceived
frequencies of consonant substitutions
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Figure 4.16: The relationship between the intended frequencies and the perceived
frequencies of consonant substitutions, without extreme values

type frequency outperform token frequency in terms of the correlation values and

the p-values. Crucially, the correlation with token frequency is extremely weak (ρ

= 0.0026) and insignificant. Interestingly, unlike the consonant substitutions, the

weighted type frequency yields a higher correlation than the unweighted measure. In

any case, both the modest correlations (with the two measures type frequency) and

the scatterplots suggest that there is a weak relationship between the frequency of

the intended segments and that of the perceived segments for the vowels.

In sum, both consonant and vowel substitutions are governed partly by the sim-
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ilarity of segmental frequency. This frequency bias is stronger for the consonants

than for the vowels. The bias is sensitive to lexical information, as suggested by how

the type frequency measures outperform the token frequency measure. Overall, the

strength of the frequency bias is weak.
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Figure 4.17: The relationship between the intended frequencies and the perceived
frequencies of vowel substitutions

4.4.2.2.2 Freq.Perceived > or ≈ Freq.Intended The last section found that the

frequency of the intended segments and that of the perceived segments are correlated.

However, this does not necessarily mean that the frequency of the perceived segment

tends to be higher than that of the intended segment. In this section, this question

is examined.

Table 4.16 summarised the results of the paired t-tests (one-tailed), testing whether

the frequency of the perceived segment is significantly different from that of the in-

tended segment for each pair of substitutions.

The table shows that all the t-values are positive, which suggests that the fre-

quency of the perceived segments is higher than that of the intended segments; there-

fore, they are not similarly frequent. However, most of the p-values were greater than

0.1, meaning that this difference is small. In terms of significance levels, only the

consonants with the two type frequency measures are significant (p < 0.05). We
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Frequency Measure Consonants Vowels

Token 0.889n.s.
(p=0.1875)

0.6061n.s.
(p=0.2714)

Type 1.7687∗

(p=0.0395)
0.6407n.s.

(p=0.2597)

Type (Weighted) 1.7625∗
(p=0.0394)

0.6563n.s.

(p=0.2548)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1, n.s.p > 0.1

Table 4.16: Paired t-tests (one-tailed) on the intended and perceived segments of con-
sonants and vowels with three frequency measures: the level of statistical significance
is denoted by the superscript symbols and the p-values are shown between the brack-
ets; the bold value in each column is the highest t-value amongst the three frequency
measures.

found that a) the two measures of type frequency yield greater t-values (i.e. a bigger

difference) than the token frequency measure, b) the unweighted frequency measure

yields a greater t-value than the weighted measure for the consonants and the reverse

is true for the vowels, and c) the difference (across all three frequency measures) is

larger for the consonants than for the vowels. These three findings were also found

in the correlation analyses earlier.

In sum, there is a weak tendency for the perceived segments to be of a higher

frequency than the intended segments. This tendency is statistically significant for

the consonants, but not for the vowels.

4.4.2.3 Conclusion

This section examined the frequency of the intended segments and the frequency

of the perceived segments that are involved in substitution errors. Concretely, we

examined whether the segmental frequency of the intended segment has a relationship

with the segmental frequency of the perceived segment, and whether the frequency

of the perceived segment is similar to or higher than that of intended segment.

In Section 4.4.2.2.1, the analysis revealed that there is a weak relationship be-

416



tween the frequency of the intended segment and that of the perceived segment in

substitution errors, as indicated by the modest correlation values and the correspond-

ing scatterplots. The relationship is stronger for consonant substitutions than for

vowel substitutions. Section 4.4.2.2.2 found that the perceived segment tends to be

more frequent than the intended segment in a given substitution, but this tendency

is only significant for the consonants.

Together, the findings suggest that the relative segmental frequencies play a minor

role in consonant substitutions, and an even more minor (practically non-existent)

one in vowel substitutions. The overall segmental frequency effect is weak regardless

of the frequency measure. Comparing these findings with those in Section 4.4.1 on

word frequency, it is clear that the word frequency effect cannot be reduced to a

segmental frequency effect. In other words, the graceful degradation account plays

a significant role in word misperception and not in segmental misperception.

4.5 Self-information

Existing models in psychoacoustic research have been developed to predict the over-

all speech intelligibility under the effect of noise; for instance, the Articulation In-

dex (AI) (French and Steinberg, 1947; Steeneken and Houtgast, 1980; Rhebergen,

Versfeld, and Dreschler, 2006) and Speech Intelligibility Index (SII) (ANSI, 1997).

Crucially these models predict whether an utterance in a given degraded signal will

be erroneously perceived.

These models can be complemented by models that predict which part of the

utterance will be misperceived. In fact, the analyses in Section 4.3 did precisely this

by using syllable factors to predict which segment in the word will be misperceived.

Now, we will extend the size of the unit from a segment to a word by predicting

which word in the utterance will be misperceived.
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As we have examined in Section 4.4, word frequency plays a definite role in

misperception in terms of lexical retrieval; the choice of the (incorrectly) perceived

word is a function of the frequency of the intended word in word confusions. This

section will examine a different effect of frequency on misperception, which is the

predictability of word errors. In other words, if a multi-word utterance contains at

least one word error, which words are most likely to be misheard?

To do so, we will examine whether the self-information of a word can predict

whether a word will be misheard. By self-information, we are referring to Shannon

information, which is a function of the average unpredictability in a random variable

(Shannon, 1948). The Shannon information of a word, I(word), is the negative log

of the probability of a word, −log(P (word)). The probability of a word, P (word), is

the unconditional probability of a word, which is the number of times a word appears

in a sample of the language (such as our written control corpus) divided by the total

number of words in the sample. Therefore, I(word) is perfectly correlated with the

log of word frequency. In other words, a low frequency word has more information

than a high frequency word.

In natural language, we speak in context and not with isolated words. But how

do we quantify the probability of a word given its context? Since it is difficult to

model the real context (e.g. world knowledge), an estimate would be to model the

local context using a language model. A language model is a probability model

that assigns probabilities to sentences (and indeed the words in the sentences). Us-

ing a language model, it would be possible to estimate the conditional probability

of a word given the previous words, which is then converted to Shannon informa-

tion, I(word|context) = −log(p(word|context)). That is to say, in an multi-word

utterance, the self-information of a word is dependent on its preceding words. It

is important to note that while the unconditional probability and the conditional

probability of a word usually correlate with each other, they are not identical. In
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terms of the terminology, it is worth noting that the self-information based on the

conditional probability of a word given its previous words is also called surprisal

(Hale, 2001; Levy, 2008).

What mechanisms govern the relationship between self-information and word

errors? In fact, self-information plays a role in both perception and production.

Each raises a different prediction on how self-information can predict word errors.

In perception, it is well-known that the processing cost of a word is a function

of word frequency. That is, a high frequency word is processed faster than a low

frequency word, as repeatedly demonstrated in lexical decision tasks (Brysbaert and

New, 2009; New et al., 2007; Keuleers, Brysbaert, and New, 2010; Ernestus and

Cutler, 2014). This is also true for the conditional probability of a word; for in-

stance, the reading time of naturalistic texts is shorter for words that have a higher

conditional probability (Smith and Levy, 2008). In other words, the processing cost

is a function of the self-information of both words, I(word), and words given their

context, I(word|context). Given this relationship between self-information and pro-

cessing cost, we can expect that a word with high self-information is more likely to

be misperceived because of its high processing cost.

In production, the phonetic realisation of a word is a function of its self-

information. Words with high self-information tends to be spoken over a longer

period (Wright, 1979; Aylett and Turk, 2004). The same applies to phonemes with

high self-information, which are produced more slowly and with more articulatory

detail (van Son and van Santen, 2005). More frequent (therefore less informative)

words tend to undergo morphophonological reduction and alternation (Bybee, 1995;

Bybee and Hopper, 2001; Bybee, 2001; Coetzee and Kawahara, 2013). Given this

relationship between self-information and phonetic realisation, we would expect a

word with low self-information more likely to be misperceived because of its weak

phonetic cues.
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Having discussed the two predictions of how self-information can predict word

errors, we will describe the steps for computing the language model as well as the

statistical models in the next section.

4.5.1 Method

4.5.1.1 Data selection

The combined naturalsitic corpus from Chapter 2 is used for this analysis.

All Mondegreens (misperception of music lyrics) (253 instances) and non-English

misperceptions (69 instances) were excluded. The filtered corpus contains 4,861 in-

stances of misperception. In addition, we applied two more filters. First, we removed

instances that do not contain any word errors. 42 of these instances were found and

removed. These instances are mostly from the Labov corpus and they consist largely

of reference errors, such as the pronoun ‘her’ being referring to two different female

entities. Second, we remove instances that contain only errors (e.g. one-word ut-

terances). 948 instances were found and removed. The remaining instances are

multi-word intended utterances with at least one word error. This left us with 3,871

instances.

4.5.1.2 Probability estimation

For each intended sentence, the conditional and unconditional probabilities of each

word was estimated. The unconditional probability of a word is simply its token

frequency divided by the total number of words in the control written corpus. The

conditional probability of each word was computed over a language model as de-

scribed below.

The probabilities were estimated by a trigram language model trained on our

353.4 million word corpus as described in Chapter 2, Section 2.3. The model was

estimated using MIT Language Modeling Toolkit (v. 0.4.1) (Hsu, 2009; Hsu and
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Glass, 2008), with modified Kneser-Ney smoothing (Kneser and Ney, 1995). In a

trigram model, the probability of a word given its context is modelled with the

probability of a word given the two previous words. If there are more than two

words before a given word, then the chain rule is applied. The modified Kneser-

Ney smoothing is a standard smoothing technique for trigram models (Chen and

Goodman, 1999). KenLM (Heafield, 2011) was used to make queries with the model.

4.5.1.3 Statistical model

The glmer function from lme4 (Bates et al., 2014) in R (R Core Team, 2013) was

used to construct logistic mixed-effects models, with the bobyqa optimizer. The

predictee and predictors are listed below.

Predictee: Word Error (Incorrect vs. Correct)

Predictors of fixed effects: I(word), I(word|context), Word Length and Proper

Name (Proper vs. Non-Proper). All the predictors are continuous, except

Proper Name which is categorical.

Variables of random effects: Utterances, Utterance Length and Corpora

In terms of the fixed effects, the two predictors of interest are the self-information

of a word using its unconditional probability, I(word) = −log(p(word)), and that of

a word using its conditional probability, I(word|context) = −log(p(word|context)).

In addition, we included two predictors which are the controls. They are Word

Length (estimated as the number of IPA segments in a word), and Proper Name

(whether a word is a proper name). These control predictors were added to control

for confounds, because word length is known to affect processing cost (the longer

the word, the higher the cost), proper names are known to behave differently from

non-proper names during lexical retrieval (Valentine, Brennen, and Brédart, 1996),
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and their probability estimates might be inaccurate (e.g. the lexical frequency of

Harvard is likely to be differ more between individuals than that of apple.)

In terms of the random effects, three variables were included, Utterances, which is

the unique number given to each utterance (which is each instance of misperception),

Utterance Length, which is the number of words in each utterance, and Corpora, which

is the seven subcorpora used to construct the combined corpus: Browman (1978),

Bird (1998), Labov (2010), Bond (Adult) (1999), Bond (Children) (1999), Nevins

(2009) and Nevins (2010). These random effects would allow us to control for the

variability of word errors in specific utterances, length of utterance and corpora.

To reduce collinearity, all continuous predictors, I(word), I(word|context) and

Word Length, were standardised by scaling and centering as z-scores. The stan-

dardized predictors are henceforth referred to as z[I(word)], z[I(word|context)] and

z[Word Length]. Following the recommendation of Rogerson (2001), any predictors

with a variance inflation factor (VIF) over 5 will indicate collinearity in the model.

Since all our predictors have VIF < 5 (the highest VIF was 4.97), collinearity is

unlikely to be a problem.

We first fitted a model with the single terms of the predictors as fixed effects and

two random intercepts.

Superset model:

Word Error ∼ z[I(word)] + z[I(word|context)] + z[Word Length] +

Proper Name+ (1|Utterances) + (1|Utterance Length) + (1|Corpora)

We then performed a series of nested model comparisons on the fixed effects using

ANOVA (test = χ2, α = 0.05). The removal of terms was justified by whether a

significant improvement to the model was made. If there were multiple subset models

that resulted in p-values exceeding the α-level in their nested model comparisons

with the superset model, the subset model with the strongest evidence (the highest

p-value) was selected. We arrived at the following best model.

422



Best model:

Word Error ∼ z[I(word)] + z[I(word|context)] + z[Word Length] +

(1|Utterances) + (1|Utterance Length) + (1|Corpora)

4.5.2 Analyses

The complete summary of the best model is shown in Table 4.17. The model

suggests the following significant predictors: z[I(word)], z[I(word|context)] and

z[Word Length]. The predictor Proper Name was dropped during the nested model

comparison, indicating that it makes an insignificant contribution to the model, and

as such it is not a useful predictor of word errors.

In the table, a positive estimate means that the corresponding predictor has

a positive relationship to the likelihood of a word error, and therefore a negative

estimate means that there is a negative relationship. Given that we have converted

our continuous predictors to z-scores, the absolute values of the estimates are now

comparable between predictors.

From the table, the strongest to the weakest predictors are z[I(word)], with an

estimate of 1.1247, the control predictor z[Word Length], with an estimate of -0.4144,

and z[I(word|context)], with an estimate of 0.2764.

Firstly, both measures of self-information survived the nested model comparison.

This means that they are both important predictors of whether a word will be mis-

heard. Secondly, the signs of the estimates of the z[I(word)] and z[Word Length]

are both positive. This supports the prediction that there is a relationship between

processing cost and self-information, such that a word with high self-information

is more likely to be misheard. The prediction that word errors are dependent on

phonetic reduction (due to low self-information) is rejected.

Secondly, the control predictor, z[Word Length], has an estimate of -0.4144,

which suggests that the longer the word is, the less likely the word would be misper-
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ceived. This is consistent the findings in previous studies such as Wiener and Miller

(1946) and Felty et al. (2013). Given that the word confusions in Felty et al. (2013)

were induced by presenting participants with words in isolation, the fact that the

word length effect is also found in our naturalistic corpus suggests that the length

effect is robust not only in isolation but also in words that are presented together

with other words.

Finally, R2
GLMM , the percentage of variance explained by the model, is calcu-

lated (Nakagawa and Schielzeth, 2013; Johnson, 2014; Bartoń, 2014) with marginal

R2
GLMM being 24% and conditional R2

GLMM being 34%. Marginal R2
GLMM repre-

sents the variance explained by fixed effects and conditional R2
GLMM represents the

variance explained by both fixed and random effects. The difference between condi-

tional R2
GLMM and Marginal R2

GLMM indicates that the random effects did capture

a sizeable portion (10%) of the variance. From Table 4.17, we see the variance of

the Utterance Length is the highest of all three random intercepts, and therefore it

contributes most towards the 10% of the variance. In other words, there is a consid-

erable amount of variation in predicting word errors that depends on the length of

the utterance. Interestingly, the variance of Corpora was 0.0718 which is a lot lower

than that of Utterance Length. This indicates that there is a high level of consistency

across corpora. Most importantly, the fixed effects capture twice as much variance

as the random effects, highlighting the strong relationship between the fixed effects

and the likelihood of word errors.

4.5.3 Conclusion

This section examined the effect of self-information on word errors. Two types of

self-information were tested. The first type is based on the unconditional probability

of a word, namely token frequency – I(word). The second type is based on the

conditional probability of a word given its preceding context, I(word|context).
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Fixed effects Estimate SE z p(> |z|)

(Intercept) −1.7563 0.1867 −9.410 < 2× 10−16∗∗∗

z[I(word)] 1.1247 0.0394 28.540 < 2× 10−16∗∗∗

z[I(word|context)] 0.2764 0.0315 8.786 < 2× 10−16∗∗∗

z[Word Length] −0.4144 0.0269 −15.410 < 2× 10−16∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1

Random effects Variance

Utterances (Intercept) 0.0475
Utterance Length (Intercept) 0.3775
Corpora (Intercept) 0.0718

Data size N

Observations 19,840
Utterances 3,739
Utterance Length 26
Corpora 7

Table 4.17: Best logistic mixed-effects model: predicting word errors with self-
information

Having controlled for potential confounds, such as word length and whether the

word is a proper name, and allowed for variations in corpora and utterances, both

types of self-information were still strong and significant predictors of whether a

word will be misperceived in an utterance. The amount of self-information of a

word is positively related to the likelihood of a word error. In other words, the less

predicable a word is, the more likely it is that it will be perceived. This confirmed

the processing cost account, in the respect that high self-information words have a

higher processing cost. The findings also rejected the phonetic reduction account,

due to the words being phonetically more reduced if they have low self-information,

and as such phonetically reduced words are hardly to perceive.

4.6 Conclusion

The focus of this chapter was to examine the top-down lexical factors that play a role

in naturalistic misperception. Top-down factors were tested from linguistic units of
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various sizes – segments, syllables, words, and utterances – and the strength of their

effects was evaluated.

Section 4.2 examined the effect of segmental frequency on two different aspects

of segmental confusions. Firstly, the target bias and the response bias are strongly

dependent on segmental frequency as confirmed by the strong to very strong cor-

relations. This frequency bias is true for substitutions, insertions and deletions.

In a segmental misperception, the probability of a given segment being the target

(the intended segment) or the response (the perceived segment) is dependent on the

probability of this segment occurring in the language, i.e. its frequency. The more

frequent a segment is, the more likely it is that it will be the intended segment that

gets misheard, and the perceived segment that is the result of a misperception.

Secondly, the difference in segmental frequency was found to be a significant pre-

dictor of the direction and strength of the asymmetrical confusions. For a given

pair of segments, the confusion pattern tends to be in the direction of the more fre-

quent segment, such that the less frequent segment is perceived as the more frequent

segment more often than the reverse.

In Section 4.3, the three syllable factors – syllable constituency (onset, nucleus,

and coda), syllable position (initial, medial, and final), and stress (unstressed and

stressed) – were found to have a definite effect on the likelihood of a segment error.

However, the effect of syllable constituency and that of stress are different between

monosyllabic words and polysyllabic words. In monosyllabic words, coda is more

erroneous than both onset and nucleus – Coda > [Onset, Nucleus]. This pattern is

consistent with the findings from previous confusion experiments (Wang and Bilger,

1973; Redford and Diehl, 1999; Benkí, 2003).

In polysyllabic words, the constituency pattern is, however, different, with on-

set being more erroneous than both nucleus and coda – Onset > [Nucleus, Coda].

This is robust across syllable positions and stress conditions. I argued that this mis-
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match between monosyllabic words and polysyllabic words is expected, since all the

external evidence was based on monosyllables. One explanation was proposed us-

ing arguments of predictability and additional transitional cues. Segments become

more predictable incrementally towards the end of a word, and this effect should

be stronger for polysyllabic words than monosyllabic words, given the findings on

uniqueness point (Luce, 1986a). Codas in word initial and medial syllables could

have extra transitional cues from sonorant onsets on the right. Assuming that the

true effect is the one found with monosyllabic words, Coda > [Onset, Nucleus], both

of these factors could decrease the error rates of coda and nucleus and as a result

onset becomes more erroneous.

For polysyllabic words, stressed syllables were less erroneous than unstressed

syllables, which supports the idea that stressed syllables are “islands of reliability”

(Pisoni, 1981). However, the effect was reversed for monosyllabic words, which can

be explained in three different ways – a reporting bias, a differing definition of stress

between monosyllabic and polysyllabic words, and lexical frequency.

Syllable position has a robust effect, in that word initial syllables are more erro-

neous than medial syllables, which in turn are more erroneous than final syllables.

This effect is stronger in unstressed syllables and is attenuated in stressed syllables.

This attenuation was argued to be a result of a ceiling effect caused by the high

perceptual salience of stress overshadowing other factors.

Section 4.4 examined the frequency relationship between intended and perceived

words. A strong and significant relationship was found between the frequency of the

intended word and that of the perceived word – Freq.Perceived = f(Freq.Intended).

This relationship remained robust after controlling for potential confounds, such as

the choice of the corpus, the shape of the word (monosyllabicity), the removal of

duplicates and the removal of pairs with a different number of syllables. This is

consistent with the large-scale experimental confusion study by Felty et al. (2013).
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The frequency of the perceived word and the frequency of the intended word are

not significantly different in the combined corpus, and the pattern is inconsistent

across subcorpora. This suggests that there is not a robust frequency difference –

Freq.Perceived ≈ Freq.Intended. In addition, the frequency relationship between the

intended and perceived words cannot be reduced to that of the intended and per-

ceived segments, as indicated by the weak correlation between the frequency of the

intended segment and that of the perceived segment in substitution and the incon-

sistency between consonants and vowels — the frequency of the perceived segment

is significantly higher than that of the intended segment only for consonants, and

not for vowels.

Section 4.5 evaluated the effect of self-information on the likelihood of a word

error in an utterance. After controlling for word length, the conditional and uncon-

ditional self-information of a word were both strong and significant predictors of word

errors. High self-information words were more erroneous than low self-information

words. This supports the processing cost account, which states that words that are

harder to retrieve/process are more erroneous. The findings also suggest that lis-

teners are sensitive to the conditional probability of a word, as opposed to only the

unconditional probability (i.e. token frequency) when processing speech on an utter-

ance level. This highlights the fact that in naturalistic speech perception, we do not

process words in isolation, but in context. This casts doubt on the ecological validity

of confusion studies which present words in isolation (Cooke, 2009; Felty et al., 2013;

Tóth et al., 2015).

To conclude, the four sets of analyses in this chapter have demonstrated that

naturalistic misperception is dependent on top-down factors from a range of linguistic

units – segments, syllables, words, and utterances. This complements our findings

in Chapter 3 in which phonological and phonetic factors were found. On the whole,

we successfully replicated findings by Bird (1998), Browman (1978), Bond (1999),
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Vitevitch (2002), and Tang and Nevins (2014) which used much smaller sets of

naturalistic data. Crucially, this chapter presented, for the first time, a wide range

of analyses of top-down factors using the largest naturalistic corpus of misperception.

429



Chapter 5

Conclusion

This chapter discusses limitations of this thesis and perspectives for future work.

The limitations are considered for each analysis in Chapter 3 and Chapter 4, and

potential solutions to overcome these limitations are proposed. Finally, I propose how

the findings of this thesis can be integrated for examining the interactions between

top-down and bottom-up factors, and how naturalistic misperception could be further

examined cross-linguistically and cross-modally.

5.1 Accent

Recall in Chapter 2, Section 2.2.5 the choice of accent transcription was discussed.

It was decided that both intended and perceived utterances are transcribed with

the utterer’s accent. There were two alternative choices: 1) transcribe both intended

and perceived utterances with the perceiver’s accent, and 2) transcribe both intended

utterance with the utterer’s accent and the perceived utterance with the perceiver’s

accent. The implication of the current choice is that the effect the interaction between

the accents of the utterer and the perceiver has on misperceptions (specifically of

the vowels) was ignored. In other words, the current analyses have underestimated

the role of dialect on misperceptions.
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The first solution is to create another set of transcriptions of the corpus by tran-

scribing both the intended utterance with the utterer’s accent and the perceived

utterance with the perceiver’s accent, even though this would overgenerate errors as

mentioned in Chapter 2, Section 2.2.5.

The second solution is to create another set of transcriptions by transcribing both

intended and perceived utterances phonemically. This is in fact how Labov (2010b)

transcribed his own corpus. The accent interaction would have to be incorporated

during the analyses, rather than in the transcriptions.

The third solution is to estimate the effect of accent interaction for each instance

of misperception. This was done by Labov (2010b) on his own corpus. Labov

(2010b) conducted an analysis of the relative contribution of five linguistic factors

(lexicon, dialect, phonology, pragmatics and syntax). Using a tertiary scoring scheme,

each instance of misperception was scored for whether each of these five factors was

inhibiting, promoting or neutral to the misperception. Dialect came second as the

promoter for 27% of the instances, after phonology. By applying the same scoring

method to the entire mega corpus, each instance would have a score of the estimated

effect of dialect (as a promoter or an inhibitor). The estimated dialect score can then

be used to subset the mega corpus at different levels, and these subcorpora can then

be cross examined to find out if the dialect/accent interaction has an impact on given

analyses. One drawback is that the estimation process is subjective. Therefore, it

should be done by multiple dialectologists or sociolinguists, with a set of well-defined

criteria, in order to to evaluate the internal consistency of the estimated scores.

5.2 Vowel analyses

The way the vowels were analysed in this thesis is that each of the following IPA

segments is a vowel: [e, E, a, A, 6, 2, O, o, u, 0, @, 3, I, U, æ, i].
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The implication of this is that the offglides [j, w] were not considered with the

nucleus portions of the vowels; and long vowels such as [A:] were treated as two vowels

[AA].

It is not immediately clear what effect this would have on the vowel confusion

analyses in this thesis. In the future, one could reparse the alignments and analyse

the confusions in terms of the lexical sets e.g. fleece, kit etc, which is effectively a

phonemic analysis of vowel confusions. Such phonemic analyses of the vowels could

be used to replicate the findings by Labov (1994b) and Labov (2010b) which supports

the concepts of subsystems and to reanalyse the comparisons with experimental vowel

confusions obtained by Cutler et al. (2004) in Chapter 3, Section 3.7.

5.3 Consonant analyses

Section 3.7 in Chapter 3 examined the ecological validity of experimental misper-

ception data. Section 3.6 in Chapter 3 examined the amount of phonetic bias in

naturalistic misperception. Both sets of analyses employed the agglomerative hier-

archical clustering method (Rokach and Maimon, 2005) to examine the data on a

structural level.

Agglomerative hierarchical clustering is a bottom-up approach. Every phone is

assumed to belong to its own cluster. These clusters are then merged iteratively to

form a hierarchy until there is only one cluster.

There is an alternative method of clustering, called divisive hierarchical clustering

(Rokach and Maimon, 2005), which is a top-down approach. All phones are assumed

to belong to one cluster. The cluster is then split iteratively to form a hierarchy

until every phone belongs to its own cluster. In the future, the divisive hierarchical

clustering method should also be tested to examine if the results are independent of

the chosen approach.
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In fact, the divisive hierarchical clustering method is similar to the successive di-

vision algorithm (SDA) of Dresher (2008). This algorithm is for specifying contrasts

by a feature hierarchy. It can construct a hierarchical structure of phonemes using

their feature specifications. It starts by assuming that all sounds form one phoneme,

then the set is divided up into small sets with each selected distinctive feature, until

every phoneme belongs to its own set. The output is a hierarchical tree.

In Chapter 3, Section 3.6, the phonetic bias of consonants was examined on a

structural level. The featural based structure, which was compared to the percep-

tual based structure, was created by first computing the featural distances between

phones using Frisch’s similarity metric (Frisch, 1996; Frisch, Broe, and Pierrehum-

bert, 1997) (Section 3.6.1), before being projected as a hierarchical structure using

the agglomerative hierarchical clustering method. In the future, SDA can be used

as an alternative method to form the featural based structure.

5.4 Ecological validity

Section 3.7 in Chapter 3 compared naturalistic misperception data with experimental

misperception data.

One limitation is that the phonological environments of the naturalistic confu-

sions did not match those of the experimental confusions. For instance, Miller and

Nicely (1955) tested 16 consonants embedded in a CV syllable with the vowel [A:];

therefore, the naturalistic confusions could be restricted to match the experimental

environments. The complication is that there are many ways of matching the envi-

ronments, e.g. 1) consonants that are in a (stressed) CV syllable with the vowel [A:],

2) word initial consonants that are in a (stressed) CV syllable with the vowel [A:],

3) word initial consonants that are in a (stressed) CV syllable with any open vowels,

etc. A preliminary exploration of subsetting the context-free confusions by different
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environments found that some subsets of the matrices were too sparse (i.e. too many

zeros); therefore, there is a need for balancing the sparsity of a naturalistic matrix

and the specificity of its environments when comparing naturalistic misperception

data with experimental misperception data.

Alternatively, experimental data with less restricted environments may be better

candidates for comparing with the naturalistic data. For instance, segmental confu-

sions can be extracted from word level confusion data such as those obtained by Felty

et al. (2013), or even from sentence level confusion data (i.e. present participants

with sentences that are masked with noise).

One aspect of the experimental data that was considered in the thesis is that

the confusions occurred with no pragmatic contexts. Specifically, they are not part

of a conversation; therefore, listeners have no communicative need. Listeners were

required to provide a response to what they thought they heard after being pre-

sented with a stimulus masked with noise. Confusion data that were obtained in a

conversational setting should therefore be more ecologically valid and should yield

higher correlation values with the naturalistic data. A potential source of such data

is the Diapix corpus1 (Hazan and Baker, 2011; Baker and Hazan, 2011). The corpus

contains recordings of conversations between participants who engaged in pairs in

‘spot the difference’ picture tasks in both quiet and noise conditions. Having briefly

examined the corpus, we can now identify confusion data from the conversations.

For instance, participant A told participant B, “There is a dog at the bottom left

of the picture”. Participant B replied, “I cannot see a doll, do you mean a dog?”.

Therefore, it is possible to infer that participant B misheard dog as doll.
1I thank Michele Pettinato for suggesting this.
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5.5 Segmental frequency

Section 4.2 in Chapter 4 examined the effect of segmental frequency on segmental

confusions. However, only naturalistic data were analysed. It is yet to be known

whether the findings can be extended to experimental data. One might even spec-

ulate that the effect of frequency would be stronger in experimental data because

they are not affected by other top-down effects, e.g. word frequency. Therefore in

the future similar analyses could be conducted on the experimental data described

in Section 3.7.1, Chapter 3.

5.6 Syllable factor

Section 4.3 in Chapter 4 examined the effect of syllable constituency, syllable position,

and stress. Four limitations are discussed below.

Firstly, in a similar analysis by Browman (1980) using the Browman data (a

subset of the combined corpus), the author divided the segmental errors into two

types – acoustic errors, and lexical errors. An acoustic error is defined as having one

feature difference between the intended segment and the perceived segment, while

a lexical error is defined as having multiple feature differences. The author argued

that the errors with multiple feature differences are a reflection of a failure in lexical

decision. However, this was not incorporated in the analyses in the thesis because

such a distinction seems arbitrary. It is possible that a single feature difference is

caused by a failure in lexical decision. However, it is equally possible that multi-

ple feature differences are caused by acoustic misanalysis. Nonetheless, the author

found that after separating the errors, a different pattern merged especially with the

lexical errors. Therefore, in future analyses the number of feature differences can be

incorporated by entering it as a random effect in our statistical model to capture the

variation of the severity of the errors.
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Secondly, our analyses found that segments in stressed monosyllables were more

erroneous than those in unstressed monosyllables. This surprising result was at-

tributed to a reporting bias in the naturalistic corpus, the differing definitions of

stress between polysyllabic words and monosyllabic words and/or a lexical frequency

effect.

One experiment could potentially test whether there is a reporting bias in re-

porting more stressed monosyllabic words than unstressed monosyllabic words. The

reporting bias argument is that mishearing content words (stressed monosyllabic

words) would disrupt communication more than mishearing function words (un-

stressed monosyllabic words), and therefore it is more noticeable when content words

are misheard. Based on this idea of noticeability, an experiment2 could be devised

to test whether participants can notice more stressed monosyllabic words than un-

stressed monosyllablic words being misheard in a conversation. The stimuli would

be dialogues with two interlocutors. During the conversation, one speaker would par-

tially repeat what the other has just said but with one word (which could be either

a content word or a function word) being different. For instance, Speaker A said to

Speaker B, “So I’ll bring my black bag with me tonight”; and Speaker B replied, “Why

are you bringing a black cat?”. The participants are asked to spot any instances of a

misperception by one of the two interlocutors. If the participants are able to detect

misperceptions of unstressed monosyllabic words and stressed monosyllabic words

equally well, then the reporting bias explanation can be rejected.

Thirdly, the decrease in error rates across syllable constituents (Onset > [Nucleus,

Coda]) and across syllable positions (Initial > Medial > Final) was argued to be

the result of a predictability effect (Luce, 1986a). Concretely, the predictability

of a segment increases with the number of preceding segments. To confirm this

potential effect, one could create a language model on the level of segments, and the
2I thank Michael Becker for the idea of testing the noticeability of misperceptions experimentally.
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conditional probability of a segment given its previous segments can be computed for

all the segments in the corpus, and the segmental conditional probability predictor

can then be entered in a mixed-effects model to see a) if it is a significant predictor

and b) whether syllable constituency and syllable positions are still useful predictors

after taking into account the segmental conditional probability.

Fourthly, the syllable constituency effect was different for monosyllables (Coda

> [Nucleus, Onset]) and for polysyllables (Onset > [Nucleus, Coda]). In one of the

explanations, I proposed that the true effect is the one with monosyllables, and the

error rates of the nucleus and coda consonants get lowered by other factors. One of

the factors is that the coda consonant in word initial and medial syllables could have

extra transitional cues from a sonorant onset. The extra transitional cues would

lower the error rates of the codas, such that they are even lower than the rates of the

onsets. A further analysis can be done to examine this factor by removing the codas

that are followed by a sonorant onset. Furthermore, the current analysis combined all

the consonants in an onset cluster as onsets, and all the consonants in a coda cluster

as codas. There are in fact more fine-grained positional effects within consonant

clusters. In intervocalic C1C2 clusters, C1 is less prominent than C2, such that C1

is more likely to undergo phonological processes (such as place/voicing assimilation)

than C2 (Jun, 2011). Further analyses should examine within-cluster positions of

onsets and codas, and take into account their phonological environments.

5.7 Word frequency

Section 4.4 in Chapter 4 examined the relationship between the frequency of the

intended word and that of the perceived word. Three limitations are discussed

below.

Firstly, one of the confounds was the difference in word length between the in-
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tended words and the perceived words. This was controlled for by matching the

number of syllables in the intended word and that in the perceived word. However

the number of segments was not controlled for. It is possible that two words have the

same number of syllables, but one is longer than the other. Future analyses should

incorporate the number of segments and the number of syllables of both the intended

words and the perceived words. This could potentially account for the difference be-

tween polysyllabic words and monosyllabic words, such that monoysyllabic words

correlated more strongly than polysyllabic words.

Secondly, word pairs that are the results of juncture errors were not considered,

because the errors involved multiple words being misperceived as a single word and

vice-versa. It is unclear which word amongst the multiple words should be chosen for

comparing with the single word. One possible solution is to consider the frequency

of the multiple word sequence. For instance, how big is it? is misperceived as how

bigoted. The tri-gram frequency of big is it could be compared with the frequency of

bigoted.

Third, the word frequency relationship was found to be strong and robust, while

the segmental frequency relationship was found to be weak and inconsistent. How

about the frequency relationship between the intended and perceived syllables, as

opposed to words and segments? An analysis of syllable frequency could support the

view that the syllable is a unit in perception (Bertoncini and Mehler, 1981; Cutler

and Norris, 1988; Cutler and Butterfield, 1990) and listeners are sensitive to syllable

frequency (see Carreiras, Alvarez, and Devega (1993), Perea and Carreiras (1998),

and Conrad, Grainger, and Jacobs (2007) for a syllable frequency effect in visual

word recognition). Furthermore, should we find a strong frequency relationship of

syllables, then this analysis could potentially address the fact that the word frequency

relationship is stronger for monosyllabic words than for polysyllabic words, because

monosyllabic words are the same as single syllables, while polysyllabic words consist
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of multiple syllables.

5.8 Interactions between top-down and bottom-up

factors

While it is clear that bottom-up and top-down factors are at work as demonstrated

in Chapter 3 and Chapter 4, the interaction between the two sets of factors remains

unexplored in naturalistic misperception. Even distant linguistic levels such as prag-

matics and phonetics are known to interact in perception (Rohde and Ettlinger,

2012). To bridge the gap between bottom-up and top-down factors, one approach

would be to construct a word-recognition model, building on works by Marslen-

Wilson and Welsh (1978) and Norris and McQueen (2008). In such a model, the

lexical candidates are selected using the output of bottom-up acoustic analyses as

well as top-down lexical constraints. The findings in the thesis can be entered as

biases; for instance, the confusion matrices can be used to bias the acoustic analyses,

and our lexical frequency findings can restrict the lexical candidates to those that

are of similar frequency as the intended word. The performance of the model can

serve as an indicator of the relative contribution of the factors by systematically

including/excluding specific factors.

5.9 Beyond misperception of conversational speech

This thesis focused on naturalistic misperception data of conversational speech. As

mentioned in Chapter 1, Section 1.2.5, Mondegreens and misperception of conver-

sational speech differ in the production of language, the listening environment, the

perception mechanism, and the available context. Given these differences, do listen-

ers use the same strategies when listening to sung speech?
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On the level of segmental confusions, Hirjee and Brown (2010) (as summarised

in Chapter 1, Section 1.3.2) showed that the segmental confusion matrices derived

from Mondegreens were able to capture our knowledge of perceptual similarity. Even

though a direct comparison between Mondegreen and misperceptions of conversa-

tional speech has not been made, Hirjee and Brown’s (2010) findings are encourag-

ing.

On the syllable level, in misperception of conversational speech of English, the

pattern of juncture misperceptions indicates how the listeners would use the structure

of their language to form a strategy for speech segmentation. For English, strong

syllables are most likely to be the beginning of a content word, whereas weak syllables

are either non-initial syllables or function words (Cutler and Norris, 1988; Cutler and

Butterfield, 1992). Given how function words can be stressed or lengthened in sung

speech, it would be interesting to examine whether the listeners still use rhythmic

cues to aid the speech segmentation process. In fact, this is supported by recent

work on cross-linguistic Mondegreens (errors produced by a L2 listener) (Kentner,

2015).

Mondegreens can also be induced experimentally. Beck, Kardatzki, and Ethofer

(2014) have identified two top-down factors that influence Mondegreens. They found

that the severity of the misperception is a function of the perceived wittiness of the

misperceived utterance and the vocabulary size of the listeners. It is worth examining

whether these factors also play a role in misperceptions of conversational speech.

It is clear that a thorough comparison between Mondegreens and misperceptions

of conversational speech is likely to yield promising findings on the cross-modal na-

ture of misperception. I have compiled ≈ 130,000 instances of English Mondegreens,

which will be compared in future research with the current corpus presented by this

thesis.
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5.10 Beyond misperception of English

As highlighted by Bond (1999, p. 134), it would be valuable to develop naturalistic

misperception corpora for other languages besides English. A comparison between

English and other languages would allow us to examine whether the findings with

English are universal or language specific.

In fact, Mondegreen corpora are available for Japanese (Otake, 2007), German

(Kentner, 2015), and possibly other languages. However, conversational data other

than English are scarce. The closest data of a conversational nature is Voss’s (1984)

corpus of experimental German misperceptions of sentence level stimuli. For this

reason, I have compiled ≈ 2,000 instances of conversational and Mondegreen data

for Mandarin Chinese.

There are many aspects that are worth comparing between misperceptions of

Mandarin Chinese and English, e.g. the difference between lexical tones in Mandarin

Chinese and syllable stress in English. Section 4.3 in Chapter 4 found that unstressed

syllables are more likely to be misperceived than stressed syllables. How about tones?

Are level tones more likely to be misperceived than contour tones? How about

strategies for word segmentation? Given that English listeners use stressed syllables

to mark the beginning of a word, do Mandarin Chinese listeners use particular tones

(e.g. neutral tone) to mark the beginning/end of a word? Using my developing corpus

of Mandarin Chinese, these cross-linguistic questions can therefore be addressed.
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