Against phonetic realism as the source of root co-occurrence restrictions AMP 2016, University of Southern California

Ryan Bennett¹, Kevin Tang¹, and Juan Ajsivinac Sian²

ryan.bennett@yale.edu & kevin.tang@yale.edu
https://campuspress.yale.edu/ryanbennett/ &
 http://tang-kevin.github.io/

¹Yale University

²Independent scholar

October 21st-23rd, 2016

Introduction

Two broad approaches to laryngeal co-occurrence restrictions:

FEATURAL APPROACHES: co-occurrence restrictions refer to abstract phonological features.

(e.g. Itô & Mester 1986, McCarthy 1989, Suzuki 1998, MacEachern 1999, Rose & Walker 2004, Mackenzie 2009, 2011, 2013, Hansson 2010, W. G. Bennett 2015, etc.)

► PHONETIC REALISM: co-occurrence restrictions refer to language-specific phonetic properties.

(Gallagher 2010a,b, 2011, 2012, 2015; see also Flemming 2001, 2003, Steriade 2001, 2009, etc.)

Introduction

Laryngeal co-occurrence restrictions are widely attested within roots.

(e.g. Itô & Mester 1986, MacEachern 1999, Rose & Walker 2004, Hansson 2010, Gallagher 2010b, Rose 2011, W. G. Bennett 2015, etc.)

(1) Chaha: ejectives don't occur with plain voiceless stops in roots

(Rose & Walker 2004, Rose & King 2007, Gallagher 2010a)

a.
$$[ji-k \theta ft]$$
 'he opens'

b.
$$\left[ji-t^{2}\partial\beta k^{2}\right]$$
 'it is tight'

Laryngeal co-occurrence restrictions in Kaqchikel roots

Kaqchikel has a phonemic contrast between plain voiceless and 'glottalized' plosives at corresponding places of articulation.

	Bilabial		Dental/ alveolar		Post- alveolar		Velar		Uvular		Glottal
Stop	р	6	t	t^{2}			k	k?	q	$q^{?}$?
Affricate			$\widehat{ ext{ts}}$	$\widehat{\mathrm{ts}}^{?}$	$\widehat{\mathrm{tf}}$	$\widehat{\mathrm{tf}}^{?}$					

(2) a.
$$/ko\chi$$
/ 'lion' b. $/k^2o\chi$ / 'mask

(3) a.
$$/\text{w-aq}/\text{ 'my pig'}$$

b. $/\text{w-aq}^2/\text{ 'my tongue}$

(Campbell 1977, Chacach Cutzal 1990, Cojtí Macario & Lopez 1990, García Matzar et al. 1999, Majzul et al. 2000, Brown et al. 2010, R. Bennett to appear, etc.)

Laryngeal co-occurrence restrictions in Kagchikel roots

Multiple ejectives are not allowed in a /CVC/ root, unless they are identical (Edmonson 1988: 60-72, R. Bennett to appear, and references there)

*/
$$T_1^?VT_2^?$$
/, $1 \neq 2$

- a. $/t^{?}ot^{?}/$ 'snail' (5) a. $*/q^{?}ot^{?}/$ b. $/k^{?}ek^{?}/$ 'stingy' b. $*/k^{?}eq^{?}/$ c. $/q^{?}aq^{?}/$ 'fire' c. $*/q^{?}at\widehat{J}^{?}/$ d. $/t\widehat{J}^{?}it\widehat{J}^{?}/$ 'metal' etc.

Plain stops are unrestricted.

Phonetic realism

Analytical problem: [CONSTRICTED GLOTTIS] alone does not pick out the correct natural classes for Kagchikel.

- \rightarrow /T $^{?}$ / are [CG].
- ▶ /6 ?/ are [CG] too.

Laryngeal co-occurrence restrictions in Kagchikel roots

The labial implosive $\frac{6}{}$ and glottal stop $\frac{7}{}$ are exempt from this restriction, and freely combine with ejectives in /CVC/ roots.

- (6) /6/ exempt
 - a. $/69\widehat{ts}^2$ / 'thread'
 - b. /k²i6/ 'pacaya (fruit of the Chamaedorea palm)'
 - c. $-6iq^2$ 'to swallow'
- /?/ exempt (7)
 - a. $/\widehat{ts}^{?}i?/$ 'dog'
 - b. $/ik^2/$ 'moon' (surface $[?ik^2]$) c. $/-q^2u?/$ 'blanket'

Phonetic realism

Phonetic realism: Root co-occurrence constraints are sensitive to specific dimensions of auditory similarity (Gallagher 2010b, 2011, 2012, 2015).

Phonetic realism

Auditory similarity is expressed with acoustically-defined phonological features.

Features relevant for ejectives:

▶ Burst intensity: [LOUD BURST]

▶ Release duration: [LONG VOT]

▶ Phonation: [CREAK]

These are **redundant** features: not independently contrastive, but predictable phonetic properties of ejectives.

Phonetic realism

Claim: laryngeal co-occurrence restrictions are stated over these redundant, language-specific auditory properties.

(Gallagher 2010a,b, 2011, 2012, 2015; Flemming 2001, 2003, 2004, 2005; Steriade 1999, 2001, 2009 etc.)

(8) OCP[LOUD BURST]:
Roots cannot contain two instances of a stop specified (redundantly) as [LOUD BURST]. (Gallagher 2011)

This is phonetic realism: Language-specific phonetics determine language-specific phonotactic patterning.

Phonetic realism

The acoustic properties of ejectives vary widely across languages.

- ► Consequence: the featural representation of ejectives must also vary across languages. (Gallagher 2010b: 38)
 - ► Cochabamba Quechua: $/T^{?}/=$ [LOUD BURST, LONG VOT]
 - ▶ Hausa: $/T^?/=[CREAK]$

(Lindau 1984, Kingston 1984, 2005, Ladefoged & Maddieson 1996, Warner 1996, Clements & Osu 2002, Wright et al. 2002, Bird 2002, Fallon 2002, Ham 2004, Shosted 2009, Gallagher 2010b, Percival 2015, R. Bennett to appear, etc.)

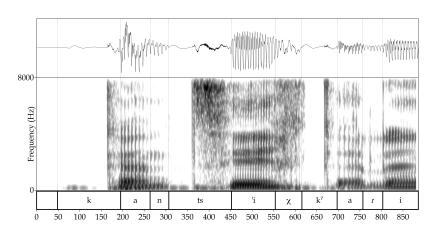
Phonetic realism

Prediction

Segment classes in laryngeal co-occurrence restrictions should correspond to phonetic classes defined by acoustic/auditory similarity.

Results

Phonetic realism: some auditory feature should be *unique* to ejectives (the restricted class).


Finding: no acoustic property is unique to ejectives.

▶ Burst intensity and VOT: $/T/ \approx /T^{?}/$

▶ Phonation: $/6/ \approx /T^{?}/$

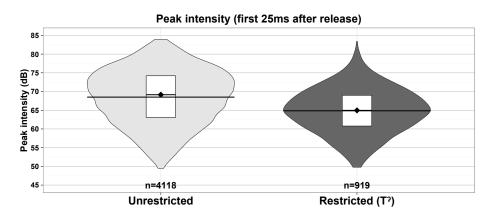
(Note: our presentation is informal/visual, but all of our descriptive claims are backed-up by statistical clustering techniques and mixed-effects regressions.)

Slack ejective $[k^{?}]$ in Kaqchikel

kan tzij k'a ri /kan tsix k'a ri/ '(but it was) truly like that' (SPEAKER 8)

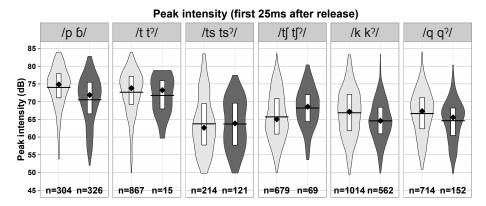
Results

Ejectives across languages:


	Stiff	Slack	
Burst intensity	Loud	Weak	
Release duration	Long	Short	
Phonation	Modal/tense	Creaky	

(Lindau 1984, Kingston 1984, 2005, Wright et al. 2002, Shosted 2009, etc.)

Observation: ejectives appear to be SLACK in Kaqchikel.


- ▶ Release properties (burst, VOT) much like plain counterparts.
- ► Creakiness distinguishes ejectives from plain counterparts.

[LOUD BURST]

Peak intensity during burst (first 25ms of VOT interval)

[LOUD BURST]

Peak intensity during burst (first 25ms of VOT interval)

(Blumstein & Stevens 1979, Stevens 2000: 455)

VOT values 120 110 100 90 (sm) TOV 50 -30 20 n=4172 n=919 Unrestricted Restricted (T²)

VOT (release noise) duration

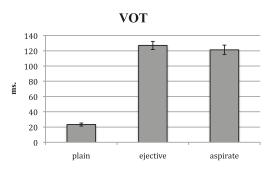
[LONG VOT]

VOT values /p 6/ /t t?/ /ts ts?/ /tʃ tʃ[?]/ /k k[?]/ /d d₅/ 120 110 -100 90 VOT (ms) 80 70 60 50 40 -30 20 -0 n=322 n=328 n=886 n=16 n=214 n=121 n=681 n=69 n=1028 n=560 n=713 n=153

VOT (release noise) duration

[LONG VOT]

[LONG VOT]


VOT does not reliably separate plain and ejective stops (except $/\mathrm{k}$ $k^{?}/)$.

[LONG VOT]

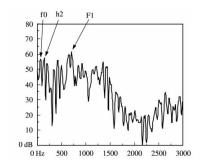
None of the Kaqchikel ejectives merit the label [LONG VOT].

(See also Keating 1984, Cho & Ladefoged 1999, Holt et al. 2004.)

► Mean VOTs for /T[?]/: 24-46ms

VOT values in Cochabamba Quechua (Gallagher 2011)

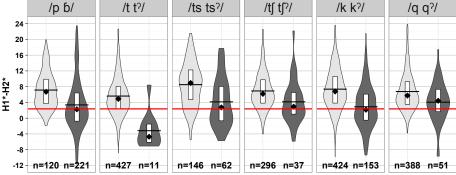
[CREAK]


Phonation fails to distinguish /6/ from $/T^{2}/$.

- ► All glottalized consonants induce creaky phonation on adjacent vowels.
- ▶ Plain stops do not induce creaky phonation.
- ▶ (n = 4267 distinct stop-adjacent vowels)

[CREAK]

A standard measure of voice quality is H1-H2:

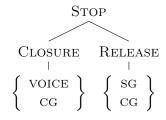

- ▶ Relative amplitude of f0 (H1) and the second harmonic (H2).
- ▶ Low H1-H2 \approx more creak.

(Gordon & Ladefoged 2001; see also Gerratt & Kreiman 2001, DiCanio 2009, 2014, Garellek 2013, Keating et al. 2015, and references there)

[CREAK]: VC transition

Creak in [VC] transition (last 1/3 of vowel)

Creakiness (H1*-H2*) during last 1/3 of vowel in VC transition


Interim summary

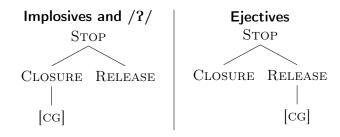
The acoustic features [LOUD BURST, LONG $VOT, \ CREAK$] fail to define phonotactically appropriate natural classes.

- ▶ [LOUD BURST, LONG VOT]: $/T/ \approx /T^{?}/$ (neither qualify)
- ► [CREAK]: $/6/ \approx /T^{?}/$

Conclusion: laryngeal co-occcurrence restrictions in Kaqchikel cannot be stated over auditorily-defined features.

Formal analysis

(after Keating 1990, Steriade 1993, 1994)


Formal analysis

Proposal: assume a different *representational status* for [CONSTRICTED GLOTTIS] in $/T^2/vs$. /6 ?/

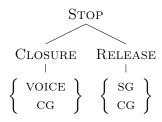
Assumption: stops have sub-segmental phonological structure.

(Kingston 1984, 1990, Keating 1990, Steriade 1993, 1994, Gafos 2002, etc.)

Formal analysis

(after Keating 1990, Steriade 1993, 1994)

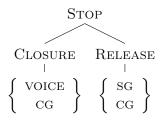
The restriction, restated


(9) $OCP[CG-REL]_{ROOT}$ Assign one violation for every /CVC/ root containing two instances of Release-linked [CONSTRICTED GLOTTIS].

(NB: the permissibility of co-occurring identical ejectives requires further mechanisms; McCarthy 1979, 1989, Gallagher & Coon 2009, Gallagher 2010a, 2014, etc.)

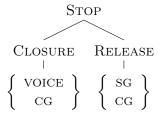
Formal analysis

Predicted long-distance dissimilations:


- ► OCP[CG-REL]: Ejectives, but not implosives or /?/ (✓, Kaqchikel)
- $lackbox{OCP[SG-REL]: Aspirated stops, but not } [h] \ (\slackbox{\checkmark}, \slackbox{Ofo, De Reuse 1981)}$
- ► OCP[F-REL]: Ejectives, aspirated stops (✓, Quechua, Parker & Weber 1996)
- $lackbox{OCP}[\mathbb{F}\text{-}CLO]$: Voiced stops and implosives: (/, Hausa, Parsons 1970)

Formal analysis

Predicted long-distance dissimilations:


- ► OCP[VOI]: Voiced obstruents (✓, Japanese, Itô & Mester 1986)
- ► OCP[CG]: Ejectives, implosives and /?/ (✓, Bolivian Aymara, Landerman 1994)
- ullet OCP[SG]: Aspirated stops and $/h\ fi/$ (\checkmark , Sanskrit, Grassmann 1863)

Formal analysis

Unexpected long-distance dissimilations:

- ► Ejectives/aspirated stops and voiced stops (unattested)
- ► Aspirated stops and implosives (unattested)

(MacEachern 1997, 1999, Rose & Walker 2004, Hansson 2010, Gallagher 2010a,b, 2011, 2015, Mackenzie 2009, 2011, 2013, W. G. Bennett 2013, 2015)

Conclusion

With respect to root-level laryngeal co-occurrence restrictions in Mayan:

- Phonetic realism is too strict: phonotactic classes do not line up with acoustic classes in Kaqchikel (and probably other Mayan languages).
- ▶ A more promising tact: OCP constraints stated over abstract (but articulatorily-grounded) features in sub-segmental structure.

References

References available on request.

Conclusion

The distinction between ejectives and implosives is crucial for phonotactic patterning in Kaqchikel.

- ► The realization of the glottalized labial as implosive /6/ (rather than ejective /p²/) is predictable from its place of articulation.
- ▶ ∴ predictable, redundant, and non-contrastive properties must be phonologically 'active' for the purposes of phonotactic restrictions.

(E.g. Vaux 1996, Steriade 2001, Flemming 2003, Gallagher 2011; cf. Hall 2007, Dresher 2009, and others.)

Slide download

Slides available for download at

http://tang-kevin.github.io/Files/Slides/Bennett_Tang_AMP.pdf